IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v12y2022i1p85-102.html
   My bibliography  Save this article

Transient temperature‐pressure field model of supercritical CO2 fracturing wellbore with tubing and annulus co‐injection

Author

Listed:
  • Lin Wu
  • Zhifeng Luo
  • Liqiang Zhao
  • Nanling Zhang
  • Zhiguang Yao
  • Yucheng Jia

Abstract

The physical parameters of supercritical carbon dioxide (SC‐CO2) fracturing fluid are sensitive to temperature and pressure. Accurate prediction of wellbore temperature and pressure during injection is critical for the fracturing efficiency. In this paper, a transient pressure‐field model of SC‐CO2 fracturing wellbore with tubing and annulus co‐injection was established, which was adjusted to consider the Joule–Thomson effect, axial heat conduction, expansion/compression heat, and friction heat. The model predicted the variation patterns of wellbore temperature and pressure, comparing them with those under tubing injection conditions. Effects of tubing‐annulus injection ratios and endothermic mode on bottom‐hole temperature (BHT) and wellhead pressure (WHP) were analyzed in detail. Compared with pure tubing injection, co‐injection provided higher BHT and lower WHP. At constant BHP, WHP dropped with time in the processes of tubing injection or co‐injection, while the former provided a larger WHP drop. With an increase in tubing injection ratio, the difference between tubing and annulus BHT values slightly grew. When the tubing and annulus injection displacements were allocated according to their cross‐sectional area ratio, their WHP was minimal. If CO2 was assumed to absorb all the friction heat, overestimation of BHT and WHP would be observed, which was more pronounced at larger injection displacements. This study's findings are considered instrumental in the design optimization and field application of SC‐CO2 fracturing in unconventional reservoirs. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Lin Wu & Zhifeng Luo & Liqiang Zhao & Nanling Zhang & Zhiguang Yao & Yucheng Jia, 2022. "Transient temperature‐pressure field model of supercritical CO2 fracturing wellbore with tubing and annulus co‐injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 85-102, February.
  • Handle: RePEc:wly:greenh:v:12:y:2022:i:1:p:85-102
    DOI: 10.1002/ghg.2124
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2124
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
    2. Jintang Wang & Baojiang Sun & Zhiyuan Wang & Jianbo Zhang, 2017. "Study on filtration patterns of supercritical CO2 fracturing in unconventional natural gas reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1126-1140, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    2. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    3. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    4. Zhifeng Luo & Lin Wu & Liqiang Zhao & Nanlin Zhang & Weihua Chen & Chong Liang, 2021. "Numerical study on filtration law of supercritical carbon dioxide fracturing in shale gas reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 871-886, October.
    5. Yi Hu & Feng Liu & Yuqiang Hu & Yong Kang & Hao Chen & Jiawei Liu, 2019. "Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses," Energies, MDPI, vol. 12(22), pages 1-13, November.
    6. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    7. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    8. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    9. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    10. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    11. Haizhu Wang & Meng Wang & Bing Yang & Qun Lu & Yong Zheng & Heqian Zhao, 2018. "Numerical study of supercritical CO2 and proppant transport in different geometrical fractures," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 898-910, October.
    12. Zhao, Liqiang & Chen, Yixin & Du, Juan & Liu, Pingli & Li, Nianyin & Luo, Zhifeng & Zhang, Chencheng & Huang, Fushan, 2019. "Experimental Study on a new type of self-propping fracturing technology," Energy, Elsevier, vol. 183(C), pages 249-261.
    13. Liang Gong & Yuan Zhang & Na Li & Ze-Kai Gu & Bin Ding & Chuan-Yong Zhu, 2020. "Molecular Investigation on the Displacement Characteristics of CH 4 by CO 2 , N 2 and Their Mixture in a Composite Shale Model," Energies, MDPI, vol. 14(1), pages 1-13, December.
    14. Xu, Chengyuan & Yan, Xiaopeng & Kang, Yili & You, Lijun & You, Zhenjiang & Zhang, Hao & Zhang, Jingyi, 2019. "Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir," Energy, Elsevier, vol. 174(C), pages 1012-1025.
    15. Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Yang, Kang & Zheng, Yi & Deng, Guangrong & Zhang, Fengshou, 2023. "Impact of supercritical CO2 exposure time on the porosity and permeability of dry and wet shale: The influence of chemo-mechanical coupling effects," Energy, Elsevier, vol. 270(C).
    16. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    17. Tang, Jizhou & Zhang, Min & Guo, Xuyang & Geng, Jianhua & Li, Yuwei, 2024. "Investigation of creep and transport mechanisms of CO2 fracturing within natural gas hydrates," Energy, Elsevier, vol. 300(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:12:y:2022:i:1:p:85-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.