IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4229-d284012.html
   My bibliography  Save this article

Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses

Author

Listed:
  • Yi Hu

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

  • Feng Liu

    (Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China
    School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Yuqiang Hu

    (Underground Gas Store Management Agency of Huabei Oilfield Company, Renqiu 062550, China)

  • Yong Kang

    (Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China
    School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Hao Chen

    (Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China
    School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Jiawei Liu

    (Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China
    School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

Abstract

Supercritical carbon dioxide (SC-CO 2 ) fracturing is a non-aqueous fracturing technology, which has attracted considerable attention on exploiting shale gas. In this study, shale specimens and artificial sandstone specimens were used to conduct SC-CO 2 fracturing and water fracturing experiments to investigate the characteristics of SC-CO 2 induced fractures. An acoustic emission (AE) monitoring device was employed to monitor the AE energy release rate during the experiment. The experiment results indicate that the breakdown pressure of SC-CO 2 fracturing is lower than that of water fracturing under the same conditions, and the AE energy release rate of SC-CO 2 fracturing is 1–2 orders of magnitude higher than that of water fracturing. In artificial sandstone, which is homogeneous, the main fracture mainly propagates along the directions perpendicular to the minimum principal stress, no matter if using SC-CO 2 or water as the fracturing fluid, but in shale with weak structural planes, the propagation direction of the fracture is controlled by the combined effect of a weak structural plane and in-situ stress.

Suggested Citation

  • Yi Hu & Feng Liu & Yuqiang Hu & Yong Kang & Hao Chen & Jiawei Liu, 2019. "Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses," Energies, MDPI, vol. 12(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4229-:d:284012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
    2. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    3. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    2. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    3. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    4. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    5. Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Yang, Kang & Zheng, Yi & Deng, Guangrong & Zhang, Fengshou, 2023. "Impact of supercritical CO2 exposure time on the porosity and permeability of dry and wet shale: The influence of chemo-mechanical coupling effects," Energy, Elsevier, vol. 270(C).
    6. Jiang, Yongdong & Luo, Yahuang & Lu, Yiyu & Qin, Chao & Liu, Hui, 2016. "Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale," Energy, Elsevier, vol. 97(C), pages 173-181.
    7. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    8. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    9. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    10. Filip Simeski & Matthias Ihme, 2023. "Supercritical fluids behave as complex networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    12. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    13. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    14. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    15. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    16. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    17. Lin Wu & Zhifeng Luo & Liqiang Zhao & Nanling Zhang & Zhiguang Yao & Yucheng Jia, 2022. "Transient temperature‐pressure field model of supercritical CO2 fracturing wellbore with tubing and annulus co‐injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 85-102, February.
    18. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    19. Han, Jinju & Lee, Minkyu & Lee, Wonsuk & Lee, Youngsoo & Sung, Wonmo, 2016. "Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding," Applied Energy, Elsevier, vol. 161(C), pages 85-91.
    20. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4229-:d:284012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.