IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013839.html
   My bibliography  Save this article

Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system

Author

Listed:
  • Nondy, J.
  • Gogoi, T.K.

Abstract

This paper compares the Non-dominated sorting genetic algorithm-II, Pareto envelope-based selection algorithm-II, and Strength Pareto evolutionary algorithm-II, while optimizing a benchmark combined heat and power system with two conflicting objectives. The most effective algorithm is determined based on the statistical parameters evaluated from 30 runs of execution, considering the hypervolume indicator and the average computational time as the performance criteria. A comparative assessment shows that the Pareto envelope-based selection algorithm-II is superior to the other two algorithms. Further, in this study, a multi-criteria decision analysis is performed on the Pareto set obtained from the Pareto envelope-based selection algorithm-II, using the technique for order preference by similarity to an ideal solution, combined with the Entropy method. To show the advantages of multi-objective optimization, the optimal solutions are also compared with the base case, and previously published results of the benchmark problem corresponding to single-objective optimization. From the Pareto envelope-based selection algorithm-II derived optimal solutions, 15.82% increase in the exergy efficiency and 12.22% reduction in the system cost rate are achieved over the base case results. The present optimal exergy efficiency is 11.89% higher and the system cost rate is 1.9% lower than the single-objective based optimal results.

Suggested Citation

  • Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013839
    DOI: 10.1016/j.energy.2021.121135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, George & Pisa, Javier, 1994. "Exergoeconomic evaluation and optimization of energy systems — application to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 287-321.
    2. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    3. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    4. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi, 2018. "A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 513-527.
    5. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    6. Frangopoulos, Christos A., 1994. "Application of the thermoeconomic functional approach to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 323-342.
    7. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    8. Yakup Çelikbilek & Fatih Tüysüz, 2020. "An in-depth review of theory of the TOPSIS method: An experimental analysis," Journal of Management Analytics, Taylor & Francis Journals, vol. 7(2), pages 281-300, April.
    9. Owebor, K. & Oko, C.O.C. & Diemuodeke, E.O. & Ogorure, O.J., 2019. "Thermo-environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-, steam-, organic fluid- and absorption refrigeration cycle thermal power plants," Applied Energy, Elsevier, vol. 239(C), pages 1385-1401.
    10. Alao, M.A. & Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Popoola, O.M., 2020. "Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria," Energy, Elsevier, vol. 201(C).
    11. Johannes Bader & Kalyanmoy Deb & Eckart Zitzler, 2010. "Faster Hypervolume-Based Search Using Monte Carlo Sampling," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 313-326, Springer.
    12. Lazzaretto, A. & Toffolo, A., 2004. "Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design," Energy, Elsevier, vol. 29(8), pages 1139-1157.
    13. Sayyaadi, Hoseyn, 2009. "Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system," Applied Energy, Elsevier, vol. 86(6), pages 867-879, June.
    14. Kalyanmoy Deb & Kalyanmoy Deb, 2014. "Multi-objective Optimization," Springer Books, in: Edmund K. Burke & Graham Kendall (ed.), Search Methodologies, edition 2, chapter 0, pages 403-449, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nondy, J. & Gogoi, T.K., 2022. "Tri-objective optimization of two recuperative gas turbine-based CCHP systems and 4E analyses at optimal conditions," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    2. Sayyaadi, Hoseyn & Babaie, Meisam & Farmani, Mohammad Reza, 2011. "Implementing of the multi-objective particle swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and environmental optimization of a benchmark cogeneration system," Energy, Elsevier, vol. 36(8), pages 4777-4789.
    3. Nondy, J. & Gogoi, T.K., 2022. "Tri-objective optimization of two recuperative gas turbine-based CCHP systems and 4E analyses at optimal conditions," Applied Energy, Elsevier, vol. 323(C).
    4. Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2018. "Developing a novel methodology based on the adaptive neuro-fuzzy interference system for the exergoeconomic optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 218-235.
    5. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    6. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    7. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    8. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    9. Hammache, Abdelaziz & Benali, Marzouk & Aubé, François, 2010. "Multi-objective self-adaptive algorithm for highly constrained problems: Novel method and applications," Applied Energy, Elsevier, vol. 87(8), pages 2467-2478, August.
    10. Sayyaadi, Hoseyn, 2009. "Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system," Applied Energy, Elsevier, vol. 86(6), pages 867-879, June.
    11. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    12. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    13. Mazur, V., 2009. "Fuzzy thermoeconomic optimization of energy-transforming systems," Applied Energy, Elsevier, vol. 84(7-8), pages 749-762, July.
    14. Lamas, Wendell de Queiróz, 2017. "Exergo-economic analysis of a typical wind power system," Energy, Elsevier, vol. 140(P1), pages 1173-1181.
    15. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    16. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    17. Kler, Aleksandr M. & Potanina, Yulia M. & Marinchenko, Andrey Y., 2020. "Co-optimization of thermal power plant flowchart, thermodynamic cycle parameters, and design parameters of components," Energy, Elsevier, vol. 193(C).
    18. Cardona, E. & Piacentino, A., 2006. "A new approach to exergoeconomic analysis and design of variable demand energy systems," Energy, Elsevier, vol. 31(4), pages 490-515.
    19. Lara, Yolanda & Petrakopoulou, Fontina & Morosuk, Tatiana & Boyano, Alicia & Tsatsaronis, George, 2017. "An exergy-based study on the relationship between costs and environmental impacts in power plants," Energy, Elsevier, vol. 138(C), pages 920-928.
    20. Wang, Ligang & Yang, Yongping & Dong, Changqing & Morosuk, Tatiana & Tsatsaronis, George, 2014. "Multi-objective optimization of coal-fired power plants using differential evolution," Applied Energy, Elsevier, vol. 115(C), pages 254-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.