IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015845.html
   My bibliography  Save this article

Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system

Author

Listed:
  • Wang, Yingjie
  • Wang, Mingjun
  • Jia, Kang
  • Tian, Wenxi
  • Qiu, Suizheng
  • Su, Guanghui

Abstract

In the Generation-IV (Gen-IV) nuclear reactor system, the liquid metal cooled fast reactor is regarded as a promising reactor type, especially the sodium-cooled fast reactor (SFR). It is necessary to investigate the thermal striping of liquid metal jets and the thermal fatigue behavior of adjacent structures at the core outlet of a liquid metal cooled fast reactor where coolant at different temperatures is mixed and causes thermal fatigue of adjacent structures. In this work, a fluid-structure coupling model and thermal fatigue assessment methodology are proposed and employed to study the thermal fatigue of structures subjected to liquid mental jets at the core outlet of the SFR. The temperature field and velocity distribution of the fluid, as well as the deformation and thermal stress of structures are obtained. The transient load and thermal fatigue damage of the structure at different locations are also calculated and analyzed. The fatigue damage factor of the structure is less than 1.0. The max deformation is predicted and a relatively large von Mises stress is located in the junction of central column and control rod guide tube, as well as the area of geometric structure mutation.

Suggested Citation

  • Wang, Yingjie & Wang, Mingjun & Jia, Kang & Tian, Wenxi & Qiu, Suizheng & Su, Guanghui, 2022. "Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015845
    DOI: 10.1016/j.energy.2022.124681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    2. Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
    3. Zhang, Hengliang & Xie, Danmei & Yu, Yanzhi & Yu, Liangying, 2016. "Online optimal control schemes of inlet steam temperature during startup of steam turbines considering low cycle fatigue," Energy, Elsevier, vol. 117(P1), pages 105-115.
    4. Li, Yafei & Deng, Jianqiang, 2022. "Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model," Energy, Elsevier, vol. 238(PC).
    5. Granda, Mariusz & Trojan, Marcin & Taler, Dawid, 2020. "CFD analysis of steam superheater operation in steady and transient state," Energy, Elsevier, vol. 199(C).
    6. Wang, Kang & Xie, Kai & Zhang, Hui & Qiang, Yujie & Du, Yanping & Xiong, Yaxuan & Zou, Zhenwei & Zhang, Mingbao & Zhong, Liqiong & Akkurt, Nevzat & Chen, Ning & Xu, Qian, 2022. "Numerical evaluation of the coupled/uncoupled effectiveness of a fluid-solid-thermal multi-field model for a long-distance energy transmission pipeline," Energy, Elsevier, vol. 251(C).
    7. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    8. González-Gómez, P.A. & Gómez-Hernández, J. & Briongos, J.V. & Santana, D., 2018. "Fatigue analysis of the steam generator of a parabolic trough solar power plant," Energy, Elsevier, vol. 155(C), pages 565-577.
    9. Ebrahimian, M. & Ansarifar, G.R., 2016. "Investigation of the nano fluid effects on heat transfer characteristics in nuclear reactors with dual cooled annular fuel using CFD (Computational Fluid Dynamics) modeling," Energy, Elsevier, vol. 98(C), pages 1-14.
    10. Lo Frano, R. & Forasassi, G., 2011. "Preliminary evaluation of seismic isolation effects in a Generation IV reactor," Energy, Elsevier, vol. 36(4), pages 2278-2284.
    11. Mourogov, V. & Juhn, P.E. & Kupitz, J. & Rineiskii, A., 1998. "Liquid-metal-cooled-fast reactor (LMFR) development and IAEA activities," Energy, Elsevier, vol. 23(7), pages 637-648.
    12. Jorge de Oliveira Marum, Victor & Reis, Lívia Bueno & Maffei, Felipe Silva & Ranjbarzadeh, Shahin & Korkischko, Ivan & Gioria, Rafael dos Santos & Meneghini, Julio Romano, 2021. "Performance analysis of a water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical modeling," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lin & Deng, Chang & Liu, Xiaojing, 2024. "Energy transfer and interaction between liquid metal with water," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    2. Katarzyna Węglarz & Dawid Taler & Jan Taler & Mateusz Marcinkowski, 2023. "Numerical Modelling of Steam Superheaters in Supercritical Boilers," Energies, MDPI, vol. 16(6), pages 1-19, March.
    3. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2020. "Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-20, January.
    4. Muhammad Usman & Atif Jahanger & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "Do Nuclear Energy, Renewable Energy, and Environmental-Related Technologies Asymmetrically Reduce Ecological Footprint? Evidence from Pakistan," Energies, MDPI, vol. 15(9), pages 1-24, May.
    5. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    6. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    7. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    8. Dong-mei, Ji & Jia-qi, Sun & Quan, Sun & Heng-Chao, Guo & Jian-xing, Ren & Quan-jun, Zhu, 2018. "Optimization of start-up scheduling and life assessment for a steam turbine," Energy, Elsevier, vol. 160(C), pages 19-32.
    9. Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.
    10. Hui, Jiuwu, 2024. "Discrete-time sliding mode prescribed performance controller via Kalman filter and disturbance observer for load following of a pressurized water reactor," Energy, Elsevier, vol. 302(C).
    11. Ding, Hongbing & Dong, Yuanyuan & Yang, Yan & Wen, Chuang, 2024. "Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes," Applied Energy, Elsevier, vol. 372(C).
    12. Ji, Dong-Mei & Sun, Jia-Qi & Dui, Yue & Ren, Jian-Xing, 2017. "The optimization of the start-up scheduling for a 320 MW steam turbine," Energy, Elsevier, vol. 125(C), pages 345-355.
    13. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    14. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    15. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    16. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    17. Merk, Bruno & Stanculescu, Alexander & Chellapandi, Perumal & Hill, Robert, 2015. "Progress in reliability of fast reactor operation and new trends to increased inherent safety," Applied Energy, Elsevier, vol. 147(C), pages 104-116.
    18. Lixing Zheng & Yiyan Zhang & Lifen Hao & Haojie Lian & Jianqiang Deng & Wei Lu, 2022. "Modelling, Optimization, and Experimental Studies of Refrigeration CO 2 Ejectors: A Review," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    19. Yang, Yaru & Li, Hua & Yao, Jin & Gao, Wenxiang, 2019. "Research on the characteristic parameters and rotor layout principle of dual-rotor horizontal axis wind turbine," Energy, Elsevier, vol. 189(C).
    20. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.