IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v27y2002i12p1085-1098.html
   My bibliography  Save this article

Analysis of the dynamic characteristics of a combined-cycle power plant

Author

Listed:
  • Shin, J.Y.
  • Jeon, Y.J.
  • Maeng, D.J.
  • Kim, J.S.
  • Ro, S.T.

Abstract

Gas/steam combined cycle has already become a well-known and substantial technology for power generation due to its numerous advantages including high efficiency and low environmental emission. Many studies have been carried out for better performance and safe and reliable operation of combined-cycle power plants. A power plant is basically operated on its design conditions. However, it also operates on the so called off-design conditions due to the variation in a power load, process requirements, or operating mode. Therefore, the transient behavior of the system should be well-known for the safe operation and reliable control. In this study, dynamic simulation is performed to analyze the transient behavior of a combined-cycle power plant. Each component of the power plant system is mathematically modeled and then integrated into the unsteady form of conservation equations. Transient behavior was simulated when rapid changes and periodic oscillations of the gas turbine load are imposed. Time delay characteristic caused by the thermal and fluid damping is analyzed and overall time-response of the combined power plant system is shown.

Suggested Citation

  • Shin, J.Y. & Jeon, Y.J. & Maeng, D.J. & Kim, J.S. & Ro, S.T., 2002. "Analysis of the dynamic characteristics of a combined-cycle power plant," Energy, Elsevier, vol. 27(12), pages 1085-1098.
  • Handle: RePEc:eee:energy:v:27:y:2002:i:12:p:1085-1098
    DOI: 10.1016/S0360-5442(02)00087-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202000877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00087-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.
    2. Caselles-Moncho, Antonio & Ferrandiz-Serrano, Liliana & Peris-Mora, Eduardo, 2006. "Dynamic simulation model of a coal thermoelectric plant with a flue gas desulphurisation system," Energy Policy, Elsevier, vol. 34(18), pages 3812-3826, December.
    3. Delattin, F. & De Ruyck, J. & Bram, S., 2009. "Detailed study of the impact of co-utilization of biomass in a natural gas combined cycle power plant through perturbation analysis," Applied Energy, Elsevier, vol. 86(5), pages 622-629, May.
    4. Sabia, Gabriele & Heinze, Christian & Alobaid, Falah & Martelli, Emanuele & Epple, Bernd, 2019. "ASPEN dynamics simulation for combined cycle power plant – Validation with hot start-up measurement," Energy, Elsevier, vol. 187(C).
    5. Omar Mohamed & Ashraf Khalil, 2020. "Progress in Modeling and Control of Gas Turbine Power Generation Systems: A Survey," Energies, MDPI, vol. 13(9), pages 1-26, May.
    6. Möller, Björn Fredriksson & Genrup, Magnus & Assadi, Mohsen, 2007. "On the off-design of a natural gas-fired combined cycle with CO2 capture," Energy, Elsevier, vol. 32(4), pages 353-359.
    7. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    8. Blanco, Jesús M. & Vazquez, L. & Peña, F., 2012. "Investigation on a new methodology for thermal power plant assessment through live diagnosis monitoring of selected process parameters; application to a case study," Energy, Elsevier, vol. 42(1), pages 170-180.
    9. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    10. Alobaid, Falah & Pfeiffer, Stefan & Epple, Bernd & Seon, Chil-Yeong & Kim, Hyun-Gee, 2012. "Fast start-up analyses for Benson heat recovery steam generator," Energy, Elsevier, vol. 46(1), pages 295-309.
    11. Subramanian, Navaneethan & Madejski, Paweł, 2023. "Analysis of CO2 capture process from flue-gases in combined cycle gas turbine power plant using post-combustion capture technology," Energy, Elsevier, vol. 282(C).
    12. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    13. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    14. Alobaid, Falah & Postler, Ralf & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2008. "Modeling and investigation start-up procedures of a combined cycle power plant," Applied Energy, Elsevier, vol. 85(12), pages 1173-1189, December.
    15. Hui Gu & Hongxia Zhu & Xiaobo Cui, 2021. "Multivariate State Estimation Technique Combined with Modified Information Entropy Weight Method for Steam Turbine Energy Efficiency Monitoring Study," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. Bonfiglio, A. & Cacciacarne, S. & Invernizzi, M. & Procopio, R. & Schiano, S. & Torre, I., 2017. "Gas turbine generating units control via feedback linearization approach," Energy, Elsevier, vol. 121(C), pages 491-512.
    17. Carazas, F.J.G. & Salazar, C.H. & Souza, G.F.M., 2011. "Availability analysis of heat recovery steam generators used in thermal power plants," Energy, Elsevier, vol. 36(6), pages 3855-3870.
    18. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    19. Alobaid, Falah & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2009. "Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures," Applied Energy, Elsevier, vol. 86(7-8), pages 1274-1282, July.
    20. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:27:y:2002:i:12:p:1085-1098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.