IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3304-d569159.html
   My bibliography  Save this article

Development and Validation of a Dynamic Simulation Model for an Integrated Solar Combined Cycle Power Plant

Author

Listed:
  • Ayman Temraz

    (Institute for Energy Systems and Technology, Mechanical Engineering Department, Technical University of Darmstadt, 64287 Darmstadt, Germany
    Mechanical Power and Energy Department, Military Technical College, Cairo 11766, Egypt)

  • Falah Alobaid

    (Institute for Energy Systems and Technology, Mechanical Engineering Department, Technical University of Darmstadt, 64287 Darmstadt, Germany)

  • Jerome Link

    (Institute for Energy Systems and Technology, Mechanical Engineering Department, Technical University of Darmstadt, 64287 Darmstadt, Germany)

  • Ahmed Elweteedy

    (Mechanical Power and Energy Department, Military Technical College, Cairo 11766, Egypt)

  • Bernd Epple

    (Institute for Energy Systems and Technology, Mechanical Engineering Department, Technical University of Darmstadt, 64287 Darmstadt, Germany)

Abstract

The combined cycle power plants are the most recognized thermal power plants for their high efficiency, fast start-up capability, and relatively low environmental impact. Moreover, their flexible unit dispatch supports the share of renewable energy, which contributes to carbon mitigation. The operational flexibility of Integrated Solar Combined Cycle (ISCC) power plants is a crucial factor for reliable grid stability. To evaluate the limitations and capabilities of ISCC power plants and their control structures, dynamic simulation is a feasible method. In this study, a sophisticated dynamic process model of the ISCC power plant in Kuraymat, Egypt, has been developed using APROS software. The model describes the plant with a high level of detail including the solar field, the heat recovery steam generator, and the control structures. The model was implemented structurally identical to the reference plant and tuned using the operational design data. Actual measurements were used as the basis for the initialization and validation of the dynamic simulation environment. Dynamic analysis of four different days was performed, then the simulation results were presented and compared with actual measurements. The comparison showed that the course of the actual measurements could be predicted with high accuracy. The solar field influences and the system’s overall power curves are reliably simulated. Consequently, the validated model can simulate the dynamic behavior of the ISCC power plant with a high degree of accuracy, and can be considered in future planning decisions.

Suggested Citation

  • Ayman Temraz & Falah Alobaid & Jerome Link & Ahmed Elweteedy & Bernd Epple, 2021. "Development and Validation of a Dynamic Simulation Model for an Integrated Solar Combined Cycle Power Plant," Energies, MDPI, vol. 14(11), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3304-:d:569159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alobaid, Falah & Postler, Ralf & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2008. "Modeling and investigation start-up procedures of a combined cycle power plant," Applied Energy, Elsevier, vol. 85(12), pages 1173-1189, December.
    2. Spelling, James & Favrat, Daniel & Martin, Andrew & Augsburger, Germain, 2012. "Thermoeconomic optimization of a combined-cycle solar tower power plant," Energy, Elsevier, vol. 41(1), pages 113-120.
    3. Rashid, Khalid & Safdarnejad, Seyed Mostafa & Ellingwood, Kevin & Powell, Kody M., 2019. "Techno-economic evaluation of different hybridization schemes for a solar thermal/gas power plant," Energy, Elsevier, vol. 181(C), pages 91-106.
    4. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    5. Ponce, Carolina V. & Sáez, Doris & Bordons, Carlos & Núñez, Alfredo, 2016. "Dynamic simulator and model predictive control of an integrated solar combined cycle plant," Energy, Elsevier, vol. 109(C), pages 974-986.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    2. Alobaid, Falah & Al-Maliki, Wisam Abed Kattea & Lanz, Thomas & Haaf, Martin & Brachthäuser, Andreas & Epple, Bernd & Zorbach, Ingo, 2018. "Dynamic simulation of a municipal solid waste incinerator," Energy, Elsevier, vol. 149(C), pages 230-249.
    3. Alobaid, Falah & Peters, Jens & Amro, Rami & Epple, Bernd, 2020. "Dynamic process simulation for Polish lignite combustion in a 1MWth circulating fluidized bed during load changes," Applied Energy, Elsevier, vol. 278(C).
    4. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    5. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    6. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    7. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    8. Dong-mei, Ji & Jia-qi, Sun & Quan, Sun & Heng-Chao, Guo & Jian-xing, Ren & Quan-jun, Zhu, 2018. "Optimization of start-up scheduling and life assessment for a steam turbine," Energy, Elsevier, vol. 160(C), pages 19-32.
    9. Kalathakis, Christos & Aretakis, Nikolaos & Roumeliotis, Ioannis & Alexiou, Alexios & Mathioudakis, Konstantinos, 2019. "Simulation models for supporting the solar thermal power plant operator," Energy, Elsevier, vol. 167(C), pages 1065-1073.
    10. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.
    11. Kevin Ellingwood & Seyed Mostafa Safdarnejad & Khalid Rashid & Kody Powell, 2018. "Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant," Energies, MDPI, vol. 12(1), pages 1-23, December.
    12. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    13. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    14. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    15. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    16. Weiguang Su & Yilin Li & Tongyu Zhou & Jo Darkwa & Georgios Kokogiannakis & Zhao Li, 2019. "Microencapsulation of Paraffin with Poly (Urea Methacrylate) Shell for Solar Water Heater," Energies, MDPI, vol. 12(18), pages 1-9, September.
    17. Wright, Daniel G. & Dey, Prasanta K. & Brammer, John, 2014. "A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK," Energy, Elsevier, vol. 71(C), pages 332-345.
    18. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    19. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    20. Ji, Dong-Mei & Sun, Jia-Qi & Dui, Yue & Ren, Jian-Xing, 2017. "The optimization of the start-up scheduling for a 320 MW steam turbine," Energy, Elsevier, vol. 125(C), pages 345-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3304-:d:569159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.