IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v110y2016icp139-147.html
   My bibliography  Save this article

Industrial surplus heat transportation for use in district heating

Author

Listed:
  • Chiu, J.NW.
  • Castro Flores, J.
  • Martin, V.
  • Lacarrière, B.

Abstract

M-TES (Mobile Thermal Energy Storage) technology is explored in this paper for transportation of industrial surplus heat for use in LTDH (low temperature district heating network). LTDH has promising potential in utilizing low grade heat, on the other hand, 20%–50% of industry generated surplus heat is often released to the ambient environment. M-TES is used to match thermal energy supply and demand that occur at different locations and that are shifted in time. In this paper, design of M-TES is conducted, optimization in operating strategies is performed, sensitivity analysis on levelized cost is studied, and environmental impact of CO2 emissions due to transportation is evaluated. The results of the study show an array of transportation means and storage operating strategies under which M-TES is technically, economically and environmentally sound for transportation of industrial surplus heat for use in LTDH network.

Suggested Citation

  • Chiu, J.NW. & Castro Flores, J. & Martin, V. & Lacarrière, B., 2016. "Industrial surplus heat transportation for use in district heating," Energy, Elsevier, vol. 110(C), pages 139-147.
  • Handle: RePEc:eee:energy:v:110:y:2016:i:c:p:139-147
    DOI: 10.1016/j.energy.2016.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-Navarro, A. & Biosca-Taronger, J. & Corberán, J.M. & Peñalosa, C. & Lázaro, A. & Dolado, P. & Payá, J., 2014. "Performance characterization of a PCM storage tank," Applied Energy, Elsevier, vol. 119(C), pages 151-162.
    2. DeForest, Nicholas & Mendes, Gonçalo & Stadler, Michael & Feng, Wei & Lai, Judy & Marnay, Chris, 2014. "Optimal deployment of thermal energy storage under diverse economic and climate conditions," Applied Energy, Elsevier, vol. 119(C), pages 488-496.
    3. Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
    4. Chiu, Justin N.W. & Martin, Viktoria, 2012. "Submerged finned heat exchanger latent heat storage design and its experimental verification," Applied Energy, Elsevier, vol. 93(C), pages 507-516.
    5. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    6. Fang, Hao & Xia, Jianjun & Zhu, Kan & Su, Yingbo & Jiang, Yi, 2013. "Industrial waste heat utilization for low temperature district heating," Energy Policy, Elsevier, vol. 62(C), pages 236-246.
    7. Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
    8. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    9. Guo, Shaopeng & Li, Hailong & Zhao, Jun & Li, Xun & Yan, Jinyue, 2013. "Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1416-1423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavangat, Athul & Bindhani, Omkar Satyaprakash & Naik, B. Kiran, 2023. "Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate," Energy, Elsevier, vol. 263(PE).
    2. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    3. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    4. Borna Doračić & Tomislav Novosel & Tomislav Pukšec & Neven Duić, 2018. "Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat," Energies, MDPI, vol. 11(3), pages 1-14, March.
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Marta Kuta, 2022. "Mobilized Thermal Energy Storage for Waste Heat Recovery and Utilization-Discussion on Crucial Technology Aspects," Energies, MDPI, vol. 15(22), pages 1-26, November.
    7. Gasia, Jaume & de Gracia, Alvaro & Peiró, Gerard & Arena, Simone & Cau, Giorgio & Cabeza, Luisa F., 2018. "Use of partial load operating conditions for latent thermal energy storage management," Applied Energy, Elsevier, vol. 216(C), pages 234-242.
    8. Moallemi, A. & Arabkoohsar, A. & Pujatti, F.J.P. & Valle, R.M. & Ismail, K.A.R., 2019. "Non-uniform temperature district heating system with decentralized heat storage units, a reliable solution for heat supply," Energy, Elsevier, vol. 167(C), pages 80-91.
    9. Antoine Fontaine & Laurence Rocher, 2021. "Energy recovery on the agenda. Waste heat: a matter of public policy and social science concern," Post-Print halshs-02971862, HAL.
    10. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    11. Kuta, Marta, 2023. "Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources," Applied Energy, Elsevier, vol. 332(C).
    12. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    13. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    15. Fujii, Shoma & Horie, Naoyuki & Nakaibayashi, Ko & Kanematsu, Yuichiro & Kikuchi, Yasunori & Nakagaki, Takao, 2019. "Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill," Applied Energy, Elsevier, vol. 238(C), pages 561-571.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    3. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    5. Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
    6. Kuta, Marta, 2023. "Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources," Applied Energy, Elsevier, vol. 332(C).
    7. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Wang, Xiaotong, 2017. "Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China," Applied Energy, Elsevier, vol. 194(C), pages 481-486.
    8. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    9. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Zhang, Zhiyu & Gu, Jie & Niu, Yonghong, 2016. "Numerical study of the improvement of an indirect contact mobilized thermal energy storage container," Applied Energy, Elsevier, vol. 161(C), pages 476-486.
    10. Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
    11. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    13. Marta Kuta, 2022. "Mobilized Thermal Energy Storage for Waste Heat Recovery and Utilization-Discussion on Crucial Technology Aspects," Energies, MDPI, vol. 15(22), pages 1-26, November.
    14. Guo, Shaopeng & Liu, Qibin & Zhao, Jun & Jin, Guang & Wang, Xiaotong & Lang, Zhongmin & He, Wenxiu & Gong, Zhijun, 2017. "Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes," Applied Energy, Elsevier, vol. 205(C), pages 703-709.
    15. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
    16. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    17. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    18. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    19. Xu, Tianhao & Gunasekara, Saman Nimali & Chiu, Justin Ningwei & Palm, Björn & Sawalha, Samer, 2020. "Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests," Applied Energy, Elsevier, vol. 261(C).
    20. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:110:y:2016:i:c:p:139-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.