IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp561-571.html
   My bibliography  Save this article

Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill

Author

Listed:
  • Fujii, Shoma
  • Horie, Naoyuki
  • Nakaibayashi, Ko
  • Kanematsu, Yuichiro
  • Kikuchi, Yasunori
  • Nakagaki, Takao

Abstract

In Tanegashima, an isolated island in Japan, a 1500 ton/day sugar mill produces raw sugar and residual bagasse simultaneously. The bagasse is burned to generate steam that drives power turbines, but the bagasse boiler burns more bagasse than that is required. Accordingly, the process has a high temperature flue gas and a sizeable amount of unused heat at around 200 °C is exhausted from the sugar mill. Conversely, many other factories on the island burn imported oil in package boilers to generate process steam at temperatures up to 120 °C, all year around. To resolve this spatial and seasonal mismatch, we employ a thermochemical energy storage and transport system that uses a zeolite steam adsorption and desorption cycle. We introduce a basic design of a heat discharging device (a “zeolite boiler”) that features a moving bed with an indirect heat exchanger. The zeolite boiler’s performance is predicted by an in house designed simulation model that includes empirical equilibrium adsorption kinetics and a heat transfer model of the exotherm for zeolite 13X adsorbing water vapor. The effects of the mass flow rates of zeolite and injected steam are computed and suggest that optimal conditions to produce 800 kg/h of steam could decrease fuel consumption by the existing oil-fired package boiler of 23.2%. We then design an advanced zeolite boiler to recover the zeolite’s sensible heat, which would otherwise be wasted. Employing this economizing process yielded a total decrease in fuel consumption of 29.6%.

Suggested Citation

  • Fujii, Shoma & Horie, Naoyuki & Nakaibayashi, Ko & Kanematsu, Yuichiro & Kikuchi, Yasunori & Nakagaki, Takao, 2019. "Design of zeolite boiler in thermochemical energy storage and transport system utilizing unused heat from sugar mill," Applied Energy, Elsevier, vol. 238(C), pages 561-571.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:561-571
    DOI: 10.1016/j.apenergy.2019.01.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919301059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    2. Yasunori Kikuchi & Yuichiro Kanematsu & Masamichi Ugo & Yosuke Hamada & Tatsuya Okubo, 2016. "Industrial Symbiosis Centered on a Regional Cogeneration Power Plant Utilizing Available Local Resources: A Case Study of Tanegashima," Journal of Industrial Ecology, Yale University, vol. 20(2), pages 276-288, April.
    3. Lora, E.S. & Andrade, R.V., 2009. "Biomass as energy source in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 777-788, May.
    4. Eyerusalem Birru & Catharina Erlich & Idalberto Herrera & Andrew Martin & Sofia Feychting & Marina Vitez & Emma Bednarcik Abdulhadi & Anna Larsson & Emanuel Onoszko & Mattias Hallersbo & Louise Weilen, 2016. "A Comparison of Various Technological Options for Improving Energy and Water Use Efficiency in a Traditional Sugar Mill," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    5. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    6. Johannes, Kévyn & Kuznik, Frédéric & Hubert, Jean-Luc & Durier, Francois & Obrecht, Christian, 2015. "Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings," Applied Energy, Elsevier, vol. 159(C), pages 80-86.
    7. Chiu, J.NW. & Castro Flores, J. & Martin, V. & Lacarrière, B., 2016. "Industrial surplus heat transportation for use in district heating," Energy, Elsevier, vol. 110(C), pages 139-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haichuan Zhao & Ning Yan & Zuoxia Xing & Lei Chen & Libing Jiang, 2020. "Thermal Calculation and Experimental Investigation of Electric Heating and Solid Thermal Storage System," Energies, MDPI, vol. 13(20), pages 1-20, October.
    2. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Kuta, Marta, 2023. "Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources," Applied Energy, Elsevier, vol. 332(C).
    4. Pavangat, Athul & Bindhani, Omkar Satyaprakash & Naik, B. Kiran, 2023. "Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate," Energy, Elsevier, vol. 263(PE).
    5. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    6. Marta Kuta, 2022. "Mobilized Thermal Energy Storage for Waste Heat Recovery and Utilization-Discussion on Crucial Technology Aspects," Energies, MDPI, vol. 15(22), pages 1-26, November.
    7. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    8. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    9. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    11. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    12. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    14. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
    15. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    16. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    17. Tang, Yong & Wang, Zhichao & Zhou, Jinzhi & Zeng, Chao & Lyu, Weihua & Lu, Lin & Yuan, Yanping, 2024. "Experimental study on the performance of packed-bed latent thermal energy storage system employing spherical capsules with hollow channels," Energy, Elsevier, vol. 293(C).
    18. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    19. Trevisan, Silvia & Wang, Wujun & Guedez, Rafael & Laumert, Björn, 2022. "Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage," Applied Energy, Elsevier, vol. 311(C).
    20. Julio Cesar Silva Junior & Andrei Lucas Michaelsen & Mauro Scalvi & Miguel Gomes Pacheco, 2020. "Forecast of electric energy generation potential from swine manure in Santa Catarina, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2305-2319, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:561-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.