IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp119-126.html
   My bibliography  Save this article

The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine

Author

Listed:
  • Dobrucali, Erinc

Abstract

In this paper, a thermodynamic analysis for an irreversible Otto–Miller Cycle (OMC) has been presented by taking into consideration heat transfer effects, frictions, time-dependent specific heats, internal irreversibility resulting from compression and expansion processes. In the analyses, the influences of the engine design parameters such as cycle temperature ratio, cycle pressure ratio, friction coefficient, engine speed, mean piston speed, stroke length, inlet temperature, inlet pressure, equivalence ratio, compression ratio, and bore-stroke length ratio on the effective power, effective power density and effective efficiency have been investigated relations with efficiency in dimensionless form. The dimensionless power output and power density and thermal efficiency relations have been computationally obtained versus the engine design parameters. The results demonstrate that the engine design and running parameters have considerable effects on the cycle thermodynamic performance. of a OMC. The results showed that the cycle efficiency increased up to 50%, as cycle temperature ratio increases from 6 to 8, the effective power raised to 11 kW from 5 kW at this range. Other parameters such as engine speed, mean piston speed, cycle pressure ratio affected the performance up to 30%, positively. However, friction coefficient and inlet temperature have negative effect on the performance. As the friction coefficient increases from 12.9 to 16.9, a performance reduction was seen up to 5%. Increase of the inlet temperature abated the performance by 40%.

Suggested Citation

  • Dobrucali, Erinc, 2016. "The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine," Energy, Elsevier, vol. 103(C), pages 119-126.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:119-126
    DOI: 10.1016/j.energy.2016.02.160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    2. Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
    3. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    4. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    5. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    6. Wróblewski, Piotr, 2023. "Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:119-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.