IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p213-d90230.html
   My bibliography  Save this article

Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

Author

Listed:
  • Peng Sun

    (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo 315201, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chi Zhang

    (University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jinhua Chen

    (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo 315201, China)

  • Fei Zhao

    (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo 315201, China)

  • Youyong Liao

    (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo 315201, China)

  • Guilin Yang

    (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo 315201, China)

  • Chinyin Chen

    (Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo 315201, China)

Abstract

Free-piston linear generators (FPLGs) have attractive application prospects for hybrid electric vehicles (HEVs) owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE), a linear electric machine (LEM) and a gas spring (GS) is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

Suggested Citation

  • Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2017. "Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator," Energies, MDPI, vol. 10(2), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:213-:d:90230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 1: Fundamental analyses," Applied Energy, Elsevier, vol. 87(4), pages 1273-1280, April.
    2. Xiao, Jin & Li, Qingfeng & Huang, Zhen, 2010. "Motion characteristic of a free piston linear engine," Applied Energy, Elsevier, vol. 87(4), pages 1288-1294, April.
    3. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    4. Mao, Jinlong & Zuo, Zhengxing & Li, Wen & Feng, Huihua, 2011. "Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation," Applied Energy, Elsevier, vol. 88(4), pages 1140-1152, April.
    5. Xu, Zhaoping & Chang, Siqin, 2010. "Prototype testing and analysis of a novel internal combustion linear generator integrated power system," Applied Energy, Elsevier, vol. 87(4), pages 1342-1348, April.
    6. Mikalsen, R. & Jones, E. & Roskilly, A.P., 2010. "Predictive piston motion control in a free-piston internal combustion engine," Applied Energy, Elsevier, vol. 87(5), pages 1722-1728, May.
    7. Kim, Jaeheun & Bae, Choongsik & Kim, Gangchul, 2013. "Simulation on the effect of the combustion parameters on the piston dynamics and engine performance using the Wiebe function in a free piston engine," Applied Energy, Elsevier, vol. 107(C), pages 446-455.
    8. Jia, Boru & Zuo, Zhengxing & Feng, Huihua & Tian, Guohong & Smallbone, Andrew & Roskilly, A.P., 2016. "Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: Simulation and test results," Applied Energy, Elsevier, vol. 164(C), pages 532-539.
    9. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng & Ma, Fukang, 2015. "Combustion characteristics analysis of hydraulic free piston diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 761-768.
    10. Zhang, Chen & Li, Ke & Sun, Zongxuan, 2015. "Modeling of piston trajectory-based HCCI combustion enabled by a free piston engine," Applied Energy, Elsevier, vol. 139(C), pages 313-326.
    11. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control," Applied Energy, Elsevier, vol. 87(4), pages 1281-1287, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jian & Yang, Fubin & Zhang, Hongguang & Wu, Zhong & Tian, Yaming & Hou, Xiaochen & Xu, Yonghong & Ren, Jing, 2020. "Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design," Energy, Elsevier, vol. 195(C).
    2. Hou, Xiaochen & Zhang, Hongguang & Xu, Yonghong & Yu, Fei & Zhao, Tenglong & Tian, Yaming & Yang, Yuxin & Zhao, Rui, 2018. "External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 212(C), pages 1252-1261.
    3. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    4. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    5. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    6. Chi Zhang & Feixue Chen & Long Li & Zhaoping Xu & Liang Liu & Guilin Yang & Hongyuan Lian & Yingzhong Tian, 2018. "A Free-Piston Linear Generator Control Strategy for Improving Output Power," Energies, MDPI, vol. 11(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    2. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    3. Jia, Boru & Smallbone, Andrew & Feng, Huihua & Tian, Guohong & Zuo, Zhengxing & Roskilly, A.P., 2016. "A fast response free-piston engine generator numerical model for control applications," Applied Energy, Elsevier, vol. 162(C), pages 321-329.
    4. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    5. Zhang, Chen & Sun, Zongxuan, 2016. "Using variable piston trajectory to reduce engine-out emissions," Applied Energy, Elsevier, vol. 170(C), pages 403-414.
    6. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    7. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    8. Hou, Xiaochen & Zhang, Hongguang & Yu, Fei & Liu, Hongda & Yang, Fubin & Xu, Yonghong & Tian, Yaming & Li, Gaosheng, 2017. "Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 208(C), pages 1297-1307.
    9. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    10. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    11. Jia, Boru & Mikalsen, Rikard & Smallbone, Andrew & Zuo, Zhengxing & Feng, Huihua & Roskilly, Anthony Paul, 2016. "Piston motion control of a free-piston engine generator: A new approach using cascade control," Applied Energy, Elsevier, vol. 179(C), pages 1166-1175.
    12. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    13. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
    14. Jia, Boru & Smallbone, Andrew & Mikalsen, Rikard & Feng, Huihua & Zuo, Zhengxing & Roskilly, Anthony Paul, 2017. "Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model," Applied Energy, Elsevier, vol. 185(P1), pages 440-451.
    15. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    16. Chi Zhang & Feixue Chen & Long Li & Zhaoping Xu & Liang Liu & Guilin Yang & Hongyuan Lian & Yingzhong Tian, 2018. "A Free-Piston Linear Generator Control Strategy for Improving Output Power," Energies, MDPI, vol. 11(1), pages 1-21, January.
    17. Huihua Feng & Yuyao Guo & Yu Song & Chendong Guo & Zhengxing Zuo, 2016. "Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process," Energies, MDPI, vol. 9(6), pages 1-19, June.
    18. Huihua Feng & Yu Song & Zhengxing Zuo & Jiao Shang & Yaodong Wang & Anthony Paul Roskilly, 2015. "Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments," Energies, MDPI, vol. 8(2), pages 1-21, January.
    19. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    20. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:213-:d:90230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.