IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v41y2012icp860-870.html
   My bibliography  Save this article

The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves

Author

Listed:
  • Jakobsson, Kristofer
  • Bentley, Roger
  • Söderbergh, Bengt
  • Aleklett, Kjell

Abstract

There is a lively debate between ‘concerned’ and ‘unconcerned’ analysts regarding the future availability and affordability of oil. We critically examine two interrelated and seemingly plausible arguments for an unconcerned view: (1) there is a growing amount of remaining reserves; (2) there is a large amount of oil with a relatively low average production cost. These statements are unconvincing on both theoretical and empirical grounds. Oil availability is about flows rather than stocks, and average cost is not relevant in the determination of price and output. We subsequently implement a bottom-up model of regional oil production with micro-foundations in both natural science and economics. An oil producer optimizes net present value under the constraints of reservoir dynamics, technological capacity and economic circumstances. Optimal production profiles for different reservoir drives and economic scenarios are derived. The field model is then combined with a discovery model of random sampling from a lognormal field size-frequency distribution. Regional discovery and production scenarios are generated. Our approach does not rely on the simple assumptions of top-down models such as the Hubbert curve – however it leads to the same qualitative result that production peaks when a substantial fraction of the recoverable resource remains in-ground.

Suggested Citation

  • Jakobsson, Kristofer & Bentley, Roger & Söderbergh, Bengt & Aleklett, Kjell, 2012. "The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves," Energy Policy, Elsevier, vol. 41(C), pages 860-870.
  • Handle: RePEc:eee:enepol:v:41:y:2012:i:c:p:860-870
    DOI: 10.1016/j.enpol.2011.11.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuller, Robert G & Cummings, Ronald G, 1974. "An Economic Model of Production and Investment for Petroleum Reservoirs," American Economic Review, American Economic Association, vol. 64(1), pages 66-79, March.
    2. James W. McFarland & Leon Lasdon & Verne Loose, 1984. "Development Planning and Management of Petroleum Reservoirs Using Tank Models and Nonlinear Programming," Operations Research, INFORMS, vol. 32(2), pages 270-289, April.
    3. Meng, Q.Y. & Bentley, R.W., 2008. "Global oil peaking: Responding to the case for ‘abundant supplies of oil’," Energy, Elsevier, vol. 33(8), pages 1179-1184.
    4. Slade, Margaret E., 1982. "Trends in natural-resource commodity prices: An analysis of the time domain," Journal of Environmental Economics and Management, Elsevier, vol. 9(2), pages 122-137, June.
    5. Roberto F. Aguilera & Roderick G. Eggert & Lagos C.C. Gustavo & John E. Tilton, 2009. "Depletion and the Future Availability of Petroleum Resources," The Energy Journal, , vol. 30(1), pages 141-174, January.
    6. Adelman, M A, 1990. "Mineral Depletion, with Special Reference to Petroleum," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 1-10, February.
    7. Roger Bentley & Godfrey Boyle, 2008. "Global Oil Production: Forecasts and Methodologies," Environment and Planning B, , vol. 35(4), pages 609-626, August.
    8. Peter R. Odell, 2010. "The Long-Term Future for Energy Resources' Exploitation," Energy & Environment, , vol. 21(7), pages 785-802, November.
    9. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    10. Stephen P. Holland, 2008. "Modeling Peak Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 61-80.
    11. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    12. James W. McKie & Stephen L. McDonald, 1962. "Petroleum Conservation in Theory and Practice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 76(1), pages 98-121.
    13. Watkins, G.C., 2006. "Oil scarcity: What have the past three decades revealed?," Energy Policy, Elsevier, vol. 34(5), pages 508-514, March.
    14. Radetzki, Marian, 2010. "Peak Oil and other threatening peaks--Chimeras without substance," Energy Policy, Elsevier, vol. 38(11), pages 6566-6569, November.
    15. Brandt, Adam R., 2010. "Review of mathematical models of future oil supply: Historical overview and synthesizing critique," Energy, Elsevier, vol. 35(9), pages 3958-3974.
    16. Raphael Amit, 1986. "Petroleum Reservoir Exploitation: Switching from Primary to Secondary Recovery," Operations Research, INFORMS, vol. 34(4), pages 534-549, August.
    17. Brandt, Adam R., 2007. "Testing Hubbert," Energy Policy, Elsevier, vol. 35(5), pages 3074-3088, May.
    18. Aguilera, Roberto F., 2009. "Oil supply in Central and South America," Energy Policy, Elsevier, vol. 37(8), pages 2916-2925, August.
    19. Haugland, Dag & Hallefjord, Asa & Asheim, Harald, 1988. "Models for petroleum field exploitation," European Journal of Operational Research, Elsevier, vol. 37(1), pages 58-72, October.
    20. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    21. Harry F. Campbell, 1980. "The Effect of Capital Intensity on the Optimal Rate of Extraction of a Mineral Deposit," Canadian Journal of Economics, Canadian Economics Association, vol. 13(2), pages 349-356, May.
    22. Sorrell, Steve & Miller, Richard & Bentley, Roger & Speirs, Jamie, 2010. "Oil futures: A comparison of global supply forecasts," Energy Policy, Elsevier, vol. 38(9), pages 4990-5003, September.
    23. Bentley, R. W., 2002. "Global oil & gas depletion: an overview," Energy Policy, Elsevier, vol. 30(3), pages 189-205, February.
    24. Robert D. Cairns & Graham A. Davis, 2001. "Adelman's Rule and the Petroleum Firm," The Energy Journal, , vol. 22(3), pages 31-54, July.
    25. Adelman, Morris Albert, 1986. "Scarcity and World Oil Prices," The Review of Economics and Statistics, MIT Press, vol. 68(3), pages 387-397, August.
    26. Aguilera, Roberto F., 2010. "The future of the European natural gas market: A quantitative assessment," Energy, Elsevier, vol. 35(8), pages 3332-3339.
    27. Bentley, R.W. & Mannan, S.A. & Wheeler, S.J., 2007. "Assessing the date of the global oil peak: The need to use 2P reserves," Energy Policy, Elsevier, vol. 35(12), pages 6364-6382, December.
    28. Robert D. Cairns, 2009. "Green Accounting for Black Gold," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 113-140.
    29. Adelman, M. A., 1991. "User cost in oil production," Resources and Energy, Elsevier, vol. 13(3), pages 217-240, September.
    30. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Brandt, Adam & Miller, Richard, 2010. "Global oil depletion: A review of the evidence," Energy Policy, Elsevier, vol. 38(9), pages 5290-5295, September.
    31. Lynch, Michael C., 2002. "Forecasting oil supply: theory and practice," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 373-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Aziz Ur Rehman & Yanpeng Cai & Nayyar Hussain Mirjat & Gordhan Das Walasai & Izaz Ali Shah & Sharafat Ali, 2017. "The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks," Energies, MDPI, vol. 10(11), pages 1-24, November.
    2. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    3. Berk, Istemi & Ediger, Volkan Ş., 2016. "Forecasting the coal production: Hubbert curve application on Turkey's lignite fields," Resources Policy, Elsevier, vol. 50(C), pages 193-203.
    4. Douglas B. Reynolds, 2024. "U.S. shale oil production and trend estimation: Forecasting a Hubbert model," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 468-487, January.
    5. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    6. Ugo Bardi & Virginia Pierini & Alessandro Lavacchi & Christophe Mangeant, 2014. "Peak Waste? The Other Side of the Industrial Cycle," Sustainability, MDPI, vol. 6(7), pages 1-14, June.
    7. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    8. Sáfián, Fanni, 2014. "Modelling the Hungarian energy system – The first step towards sustainable energy planning," Energy, Elsevier, vol. 69(C), pages 58-66.
    9. Sällh, David & Höök, Mikael & Grandell, Leena & Davidsson, Simon, 2014. "Evaluation and update of Norwegian and Danish oil production forecasts and implications for Swedish oil import," Energy, Elsevier, vol. 65(C), pages 333-345.
    10. Walan, Petter & Davidsson, Simon & Johansson, Sheshti & Höök, Mikael, 2014. "Phosphate rock production and depletion: Regional disaggregated modeling and global implications," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 178-187.
    11. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    12. Jakobsson, Kristofer & Söderbergh, Bengt & Snowden, Simon & Aleklett, Kjell, 2014. "Bottom-up modeling of oil production: A review of approaches," Energy Policy, Elsevier, vol. 64(C), pages 113-123.
    13. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    2. Fantazzini, Dean & Höök, Mikael & Angelantoni, André, 2011. "Global oil risks in the early 21st century," Energy Policy, Elsevier, vol. 39(12), pages 7865-7873.
    3. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    4. Reynolds, Douglas B. & Baek, Jungho, 2012. "Much ado about Hotelling: Beware the ides of Hubbert," Energy Economics, Elsevier, vol. 34(1), pages 162-170.
    5. Soren T. Anderson & Ryan Kellogg & Stephen W. Salant, 2018. "Hotelling under Pressure," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 984-1026.
    6. Bentley, Roger & Bentley, Yongmei, 2015. "Explaining the price of oil 1971–2014 : The need to use reliable data on oil discovery and to account for ‘mid-point’ peak," Energy Policy, Elsevier, vol. 86(C), pages 880-890.
    7. Jakobsson, Kristofer & Söderbergh, Bengt & Höök, Mikael & Aleklett, Kjell, 2009. "How reasonable are oil production scenarios from public agencies?," Energy Policy, Elsevier, vol. 37(11), pages 4809-4818, November.
    8. Verbruggen, Aviel & Al Marchohi, Mohamed, 2010. "Views on peak oil and its relation to climate change policy," Energy Policy, Elsevier, vol. 38(10), pages 5572-5581, October.
    9. Brandt, Adam R., 2010. "Review of mathematical models of future oil supply: Historical overview and synthesizing critique," Energy, Elsevier, vol. 35(9), pages 3958-3974.
    10. Reynolds, Douglas B., 2013. "Uncertainty in exhaustible natural resource economics: The irreversible sunk costs of Hotelling," Resources Policy, Elsevier, vol. 38(4), pages 532-541.
    11. Cairns, Robert D., 2014. "The green paradox of the economics of exhaustible resources," Energy Policy, Elsevier, vol. 65(C), pages 78-85.
    12. Robert D. Cairns & Graham A. Davis, 2015. "Mineral Depletion and the Rules of Resource Dynamics," The Energy Journal, , vol. 36(1_suppl), pages 159-178, June.
    13. Meier, Felix D. & Quaas, Martin F., 2021. "Booming gas – A theory of endogenous technological change in resource extraction," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    14. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    15. Jakobsson, Kristofer & Söderbergh, Bengt & Snowden, Simon & Aleklett, Kjell, 2014. "Bottom-up modeling of oil production: A review of approaches," Energy Policy, Elsevier, vol. 64(C), pages 113-123.
    16. Wang, Qiao & Balvers, Ronald, 2021. "Determinants and predictability of commodity producer returns," Journal of Banking & Finance, Elsevier, vol. 133(C).
    17. Antonio RIBBA, 2010. "Sources of Unemployment Fluctuations in the USA and in the Euro Area in the Last Decade," EcoMod2010 259600141, EcoMod.
    18. James L. Smith, 2009. "World Oil: Market or Mayhem?," Journal of Economic Perspectives, American Economic Association, vol. 23(3), pages 145-164, Summer.
    19. Toman, Michael & Krautkraemer, Jeffrey, 2003. "Fundamental Economics of Depletable Energy Supply," RFF Working Paper Series dp-03-01, Resources for the Future.
    20. Jean-Pierre Amigues & Michel Moreaux & Nguyen Manh-Hung, 2019. "The Fossil Energy Interlude: Optimal Building, Maintaining and Scraping a Dedicated Capital, and the Hotelling Rule," Working Papers 2019.07, FAERE - French Association of Environmental and Resource Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:41:y:2012:i:c:p:860-870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.