IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i8p3332-3339.html
   My bibliography  Save this article

The future of the European natural gas market: A quantitative assessment

Author

Listed:
  • Aguilera, Roberto F.

Abstract

The debate over the availability of conventional natural gas has been nearly as strong as that for conventional oil. In Europe, the debate is strengthened due to the region’s dependence on natural gas from outside countries. In addition, concern has been expressed by some energy experts in recent years about an imminent shortage of natural gas from Europe, caused supposedly by dwindling natural gas resources. Thus, the purpose of this analysis is to address the concern by assessing the availability of natural gas in the region. This is done by estimating a cumulative availability curve showing natural gas endowment versus production costs. The findings indicate that natural gas in Europe is more available and economic than often assumed. Increased research and development of this potential could help increase energy security in the region.

Suggested Citation

  • Aguilera, Roberto F., 2010. "The future of the European natural gas market: A quantitative assessment," Energy, Elsevier, vol. 35(8), pages 3332-3339.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3332-3339
    DOI: 10.1016/j.energy.2010.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Möst, Dominik & Perlwitz, Holger, 2009. "Prospects of gas supply until 2020 in Europe and its relevance for the power sector in the context of emission trading," Energy, Elsevier, vol. 34(10), pages 1510-1522.
    2. Roberto F. Aguilera & Roderick G. Eggert & Gustavo Lagos C.C. & John E. Tilton, 2009. "Depletion and the Future Availability of Petroleum Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 141-174.
    3. Tzimas, Evangelos & Peteves, Stathis D., 2005. "The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term," Energy, Elsevier, vol. 30(14), pages 2672-2689.
    4. de Almeida, Aníbal T. & Lopes, Ana Cristina & Carvalho, Anabela & Mariano, Jorge & Jahn, Andreas & Broege, Michael, 2004. "Examining the potential of natural gas demand-side measures to benefit customers, the distribution utility, and the environment: two case studies from Europe," Energy, Elsevier, vol. 29(7), pages 979-1000.
    5. Lise, Wietze & Hobbs, Benjamin F., 2008. "Future evolution of the liberalised European gas market: Simulation results with a dynamic model," Energy, Elsevier, vol. 33(7), pages 989-1004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguilera, Roberto F. & Ripple, Ronald D., 2012. "Technological progress and the availability of European oil and gas resources," Applied Energy, Elsevier, vol. 96(C), pages 387-392.
    2. Popov, Maxim & Madlener, Reinhard, 2014. "Backtesting and Evaluation of Different Trading Schemes for the Portfolio Management of Natural Gas," FCN Working Papers 5/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Hauser, Philipp & Heinrichs, Heidi U. & Gillessen, Bastian & Müller, Theresa, 2018. "Implications of diversification strategies in the European natural gas market for the German energy system," Energy, Elsevier, vol. 151(C), pages 442-454.
    4. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.
    5. Jakobsson, Kristofer & Bentley, Roger & Söderbergh, Bengt & Aleklett, Kjell, 2012. "The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves," Energy Policy, Elsevier, vol. 41(C), pages 860-870.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abada, Ibrahim & Briat, Vincent & Massol, Olivier, 2013. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," Energy, Elsevier, vol. 49(C), pages 240-251.
    2. Egging, Ruud & Holz, Franziska & Gabriel, Steven A., 2010. "The World Gas Model," Energy, Elsevier, vol. 35(10), pages 4016-4029.
    3. Daniel Huppmann, 2013. "Endogenous Shifts in OPEC Market Power: A Stackelberg Oligopoly with Fringe," Discussion Papers of DIW Berlin 1313, DIW Berlin, German Institute for Economic Research.
    4. Kamiński, Jacek, 2011. "Market power in a coal-based power generation sector: The case of Poland," Energy, Elsevier, vol. 36(11), pages 6634-6644.
    5. Vitor Miguel Ribeiro & Gustavo Soutinho & Isabel Soares, 2023. "Natural Gas Prices in the Framework of European Union’s Energy Transition: Assessing Evolution and Drivers," Energies, MDPI, vol. 16(4), pages 1-46, February.
    6. Dieckhöner, Caroline & Lochner, Stefan & Lindenberger, Dietmar, 2013. "European natural gas infrastructure: The impact of market developments on gas flows and physical market integration," Applied Energy, Elsevier, vol. 102(C), pages 994-1003.
    7. Lochner, Stefan, 2011. "Identification of congestion and valuation of transport infrastructures in the European natural gas market," Energy, Elsevier, vol. 36(5), pages 2483-2492.
    8. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.
    9. Daniel Huppmann and Franziska Holz, 2012. "Crude Oil Market Power—A Shift in Recent Years?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Langer, Lissy & Huppmann, Daniel & Holz, Franziska, 2016. "Lifting the US crude oil export ban: A numerical partial equilibrium analysis," Energy Policy, Elsevier, vol. 97(C), pages 258-266.
    11. repec:fpb:wpaper:102 is not listed on IDEAS
    12. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    13. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    14. Schulte, Simon & Weiser, Florian, 2017. "Natural Gas Transits and Market Power - The Case of Turkey," EWI Working Papers 2017-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 15 Aug 2017.
    15. Reiche, Danyel, 2010. "Sovereign wealth funds as a new instrument of climate protection policy? A case study of Norway as a pioneer of ethical guidelines for investment policy," Energy, Elsevier, vol. 35(9), pages 3569-3577.
    16. Okullo, Samuel J. & Reynès, Frédéric, 2011. "Can reserve additions in mature crude oil provinces attenuate peak oil?," Energy, Elsevier, vol. 36(9), pages 5755-5764.
    17. Tzimas, Evangelos & Mercier, Arnaud & Cormos, Calin-Cristian & Peteves, Stathis D., 2007. "Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture," Energy Policy, Elsevier, vol. 35(8), pages 3991-3998, August.
    18. Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.
    19. Edward H Owens & Samuel Chapman & Paul Allan, 2010. "The Impact of Carbon Capture and Storage on Coal Resource Depletion," Energy & Environment, , vol. 21(8), pages 925-936, December.
    20. Matovic, Darko, 2011. "Biochar as a viable carbon sequestration option: Global and Canadian perspective," Energy, Elsevier, vol. 36(4), pages 2011-2016.
    21. Li, Shuping & Li, Jianfeng & Lu, Xinsheng & Sun, Yihong, 2022. "Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3332-3339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.