IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp58-66.html
   My bibliography  Save this article

Modelling the Hungarian energy system – The first step towards sustainable energy planning

Author

Listed:
  • Sáfián, Fanni

Abstract

In Hungary, there is a need for detailed alternatives to its fossil-based, highly import-dependent energy system. In this paper, an energy model of the Hungarian energy system of 2009 is worked out, as a reference model for a 100% renewable-based scenario. The model is created in the EnergyPLAN software and is able to simulate all sectors of the national energy system on an hourly basis. The EnergyPLAN software and the main issues of its first Hungarian application are presented. The model is validated by comparing its results to Hungarian and international statistics for 2009. Two alternative models – ‘Natural gas + biomass’ and ‘Biomass’ – were created in EnergyPLAN for an analysis to see how the energy system of 2009 could have been operated in an optimised way from environmental point of view, within the existing infrastructure. In ‘Biomass’ alternative model, the utilisation of primary renewable energy sources almost doubles, causing a decrease of 10% in carbon-dioxide emission. By changing the distribution of fuels by a different power plant utilisation, more favourable fuel consumption characteristics could have been achieved from the environmental point of view in 2009.

Suggested Citation

  • Sáfián, Fanni, 2014. "Modelling the Hungarian energy system – The first step towards sustainable energy planning," Energy, Elsevier, vol. 69(C), pages 58-66.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:58-66
    DOI: 10.1016/j.energy.2014.02.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsoskounoglou, Miltos & Ayerides, George & Tritopoulou, Efi, 2008. "The end of cheap oil: Current status and prospects," Energy Policy, Elsevier, vol. 36(10), pages 3797-3806, October.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    3. Kwon, Pil Seok & Østergaard, Poul Alberg, 2012. "Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050," Energy, Elsevier, vol. 46(1), pages 275-282.
    4. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    5. Jakobsson, Kristofer & Bentley, Roger & Söderbergh, Bengt & Aleklett, Kjell, 2012. "The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves," Energy Policy, Elsevier, vol. 41(C), pages 860-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    2. Wang, Sicong & Wang, Shifeng, 2016. "Integrating spatial and biomass planning for the United States," Energy, Elsevier, vol. 114(C), pages 113-120.
    3. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    4. Njomza Ibrahimi & Alemayehu Gebremedhin & Alketa Sahiti, 2019. "Achieving a Flexible and Sustainable Energy System: The Case of Kosovo," Energies, MDPI, vol. 12(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    2. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    3. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    4. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    5. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    6. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    7. Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
    8. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "The influence of an estimated energy saving due to natural ventilation on the Mexican energy system," Energy, Elsevier, vol. 64(C), pages 1080-1091.
    9. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    10. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    12. Sencar, Marko & Pozeb, Viljem & Krope, Tina, 2014. "Development of EU (European Union) energy market agenda and security of supply," Energy, Elsevier, vol. 77(C), pages 117-124.
    13. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    14. Zhongping Liu & Baisong Su & Qingjing Ji & Yan Hu, 2024. "Local Iterative Calculation Method and Fault Analysis of Short-Circuit Current in High-Voltage Grid with Large-Scale New Energy Equipment Integration," Sustainability, MDPI, vol. 16(24), pages 1-17, December.
    15. Lee, Chi-Chuan & Lee, Chien-Chiang & Ning, Shao-Lin, 2017. "Dynamic relationship of oil price shocks and country risks," Energy Economics, Elsevier, vol. 66(C), pages 571-581.
    16. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    17. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    18. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    19. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:58-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.