IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v95y2021ics0140988320303546.html
   My bibliography  Save this article

(Bio-)Fuel mandating and the green paradox

Author

Listed:
  • Okullo, Samuel J.
  • Reynès, Frédéric
  • Hofkes, Marjan W.

Abstract

Well-intended preannounced carbon mitigation policies can lead to adverse impacts such as the green paradox. This paper examines conditions impacting the prevalence of this phenomenon, when suppliers of carbon-free energy, similarly to carbon suppliers, can anticipate the implementation of preannounced carbon regulation. Neglecting the interim build-up of carbon-free capacity that responds to preannounced climate policies over-estimates the green paradox. For EU-2020 and US-2022 calibrated biofuel mandating targets, simulations point to a robust 0.4–0.6% decline in premandate global crude oil supply, suggesting that concerns over the green paradox may have been overstated. Mandate designs to mitigate the green paradox are also examined. Initially mild targets that are complemented by increasingly stringent ones are more effective at curbing the green paradox than ambitious but delayed targets.

Suggested Citation

  • Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2021. "(Bio-)Fuel mandating and the green paradox," Energy Economics, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988320303546
    DOI: 10.1016/j.eneco.2020.105014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320303546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.105014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Winter, Ralph A., 2014. "Innovation and the dynamics of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 124-140.
    2. Coulomb, Renaud & Henriet, Fanny, 2018. "The Grey Paradox: How fossil-fuel owners can benefit from carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 206-223.
    3. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    4. Benchekroun, Hassan & Halsema, Alex & Withagen, Cees, 2009. "On nonrenewable resource oligopolies: The asymmetric case," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1867-1879, November.
    5. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    6. Berg, Elin & Kverndokk, Snorre & Rosendahl, Knut Einar, 2002. "Oil Exploration under Climate Treaties," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 493-516, November.
    7. Derek Lemoine, 2017. "Green Expectations: Current Effects of Anticipated Carbon Pricing," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 499-513, July.
    8. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    9. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    10. Roberto F. Aguilera & Roderick G. Eggert & Lagos C.C. Gustavo & John E. Tilton, 2009. "Depletion and the Future Availability of Petroleum Resources," The Energy Journal, , vol. 30(1), pages 141-174, January.
    11. Mads Greaker & Michael Hoel & Knut Einar Rosendahl, 2014. "Does a Renewable Fuel Standard for Biofuels Reduce Climate Costs?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(3), pages 337-363.
    12. Adelman, M A, 1990. "Mineral Depletion, with Special Reference to Petroleum," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 1-10, February.
    13. Andrade de Sá, Saraly & Daubanes, Julien, 2016. "Limit pricing and the (in)effectiveness of the carbon tax," Journal of Public Economics, Elsevier, vol. 139(C), pages 28-39.
    14. James M. Griffin & Craig T. Schulman, 2005. "Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    15. Adelman, M. A., 1986. "Oil producing countries' discount rates," Resources and Energy, Elsevier, vol. 8(4), pages 309-329, December.
    16. Cairns, Robert D., 2014. "The green paradox of the economics of exhaustible resources," Energy Policy, Elsevier, vol. 65(C), pages 78-85.
    17. Bai, Yiyi & Okullo, Samuel J., 2018. "Understanding oil scarcity through drilling activity," Energy Economics, Elsevier, vol. 69(C), pages 261-269.
    18. Schennach, Susanne M., 2000. "The Economics of Pollution Permit Banking in the Context of Title IV of the 1990 Clean Air Act Amendments," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 189-210, November.
    19. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    20. Thomas Eichner & Rüdiger Pethig, 2011. "Carbon Leakage, The Green Paradox, And Perfect Future Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 767-805, August.
    21. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    22. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
    23. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    24. Maura Allaire and Stephen P. A. Brown, 2015. "The Green Paradox of U.S. Biofuel Subsidies: Impact on Greenhouse Gas Emissions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    25. Stephen G. Powell & Shmuel S. Oren, 1989. "The Transition to Nondepletable Energy: Social Planning and Market Models of Capacity Expansion," Operations Research, INFORMS, vol. 37(3), pages 373-383, June.
    26. Corrado Di Maria & Sjak Smulders & Edwin Werf, 2017. "Climate Policy with Tied Hands: Optimal Resource Taxation Under Implementation Lags," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 537-551, March.
    27. Ujjayant Chakravorty & Marie-HéLène Hubert, 2013. "Global Impacts of the Biofuel Mandate under a Carbon Tax," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 282-288.
    28. Geoffrey Heal & Wolfram Schlenker, 2019. "Coase, Hotelling and Pigou: The Incidence of a Carbon Tax and CO₂ Emissions," NBER Working Papers 26086, National Bureau of Economic Research, Inc.
    29. Soren T. Anderson & Ryan Kellogg & Stephen W. Salant, 2018. "Hotelling under Pressure," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 984-1026.
    30. Robert M. Solow & Frederic Y. Wan, 1976. "Extraction Costs in the Theory of Exhaustible Resources," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 359-370, Autumn.
    31. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    32. Salant, Stephen W, 1976. "Exhaustible Resources and Industrial Structure: A Nash-Cournot Approach to the World Oil Market," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 1079-1093, October.
    33. Di Maria, Corrado & Lange, Ian & van der Werf, Edwin, 2014. "Should we be worried about the green paradox? Announcement effects of the Acid Rain Program," European Economic Review, Elsevier, vol. 69(C), pages 143-162.
    34. Marc Gronwald & Ngo Long & Luise Roepke, 2017. "Simultaneous Supplies of Dirty Energy and Capacity Constrained Clean Energy: Is There a Green Paradox?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 47-64, September.
    35. Quentin Grafton, R. & Kompas, Tom & Van Long, Ngo, 2012. "Substitution between biofuels and fossil fuels: Is there a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 328-341.
    36. van der Meijden, Gerard & van der Ploeg, Frederick & Withagen, Cees, 2015. "International capital markets, oil producers and the Green Paradox," European Economic Review, Elsevier, vol. 76(C), pages 275-297.
    37. Okullo, Samuel J. & Reynès, Frédéric, 2011. "Can reserve additions in mature crude oil provinces attenuate peak oil?," Energy, Elsevier, vol. 36(9), pages 5755-5764.
    38. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    39. van der Meijden, Gerard & Ryszka, Karolina & Withagen, Cees, 2018. "Double limit pricing," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 153-167.
    40. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    41. Sinclair, Peter J N, 1992. "High Does Nothing and Rising Is Worse: Carbon Taxes Should Keep Declining to Cut Harmful Emissions," The Manchester School of Economic & Social Studies, University of Manchester, vol. 60(1), pages 41-52, March.
    42. Thompson, Andrew C., 2001. "The Hotelling Principle, backwardation of futures prices and the values of developed petroleum reserves -- the production constraint hypothesis," Resource and Energy Economics, Elsevier, vol. 23(2), pages 133-156, April.
    43. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    44. Coulomb, Renaud & Henriet, Fanny, 2018. "The Grey Paradox: How fossil-fuel owners can benefit from carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 206-223.
    45. Nico Bauer & Christophe McGlade & Jérôme Hilaire & Paul Ekins, 2018. "Divestment prevails over the green paradox when anticipating strong future climate policies," Nature Climate Change, Nature, vol. 8(2), pages 130-134, February.
    46. Ujjayant Chakravorty & Marie-Hélène Hubert, 2013. "Global impacts of the biofuel mandate under a carbon tax," Post-Print halshs-00761197, HAL.
    47. Di Maria, Corrado & Smulders, Sjak & van der Werf, Edwin, 2012. "Absolute abundance and relative scarcity: Environmental policy with implementation lags," Ecological Economics, Elsevier, vol. 74(C), pages 104-119.
    48. Okullo, Samuel J. & Reynès, Frédéric, 2016. "Imperfect cartelization in OPEC," Energy Economics, Elsevier, vol. 60(C), pages 333-344.
    49. Van Long Ngo, 2010. "A Survey of Dynamic Games in Economics," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7577, August.
    50. van der Ploeg, Frederick, 2016. "Second-best carbon taxation in the global economy: The Green Paradox and carbon leakage revisited," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 85-105.
    51. Holland, Stephen P., 2003. "Set-up costs and the existence of competitive equilibrium when extraction capacity is limited," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 539-556, November.
    52. Robert Cairns, 2001. "Capacity Choice and the Theory of the Mine," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 129-148, January.
    53. Wang, Min & Zhao, Jinhua, 2018. "Are renewable energy policies climate friendly? The role of capacity constraints and market power," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 41-60.
    54. John Asker & Allan Collard-Wexler & Jan De Loecker, 2019. "(Mis)Allocation, Market Power, and Global Oil Extraction," American Economic Review, American Economic Association, vol. 109(4), pages 1568-1615, April.
    55. Swierzbinski, Joseph E & Mendelsohn, Robert, 1989. "Exploration and Exhaustible Resources: The Microfoundations of Aggregate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(1), pages 175-186, February.
    56. Holland, Stephen P., 2003. "Extraction capacity and the optimal order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 569-588, May.
    57. Jon Strand, 2007. "Technology Treaties and Fossil-Fuels Extraction," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 129-142.
    58. U. Chakravorty & Marie-Hélène Hubert, 2013. "Global Impacts of the Biofuel Mandate under a Carbon Tax," Post-Print halshs-02315604, HAL.
    59. Sinn, Hans-Werner, 2012. "The Green Paradox: A Supply-Side Approach to Global Warming," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262016680, April.
    60. Black, Geoffrey & LaFrance, Jeffrey T., 1998. "Is Hotelling's Rule Relevant to Domestic Oil Production?," Journal of Environmental Economics and Management, Elsevier, vol. 36(2), pages 149-169, September.
    61. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    62. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329, September.
    63. Robert D. Cairns & Graham A. Davis, 2001. "Adelman's Rule and the Petroleum Firm," The Energy Journal, , vol. 22(3), pages 31-54, July.
    64. Okullo, Samuel & Reynes, F., 2016. "Imperfect Cartelization in OPEC," Other publications TiSEM 2cde72e6-5ed5-46d4-96ca-2, Tilburg University, School of Economics and Management.
    65. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alena Miftakhova & Clément Renoir, 2021. "Economic Growth and Equity in Anticipation of Climate Policy," CER-ETH Economics working paper series 21/355, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Gabriel E. Lade & C.-Y. Cynthia Lin Lawell, 2021. "The Design of Renewable Fuel Mandates and Cost Containment Mechanisms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 213-247, June.
    3. Finn Roar Aune & Ann Christin Bøeng & Snorre Kverndokk & Lars Lindholt & Knut Einar Rosendahl, 2017. "Fuel Efficiency Improvements: Feedback Mechanisms and Distributional Effects in the Oil Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 15-45, September.
    4. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    2. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    3. Kollenbach, Gilbert & Schopf, Mark, 2022. "Unilaterally optimal climate policy and the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    4. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62.
    5. Okullo, Samuel J. & Reynès, Frédéric, 2016. "Imperfect cartelization in OPEC," Energy Economics, Elsevier, vol. 60(C), pages 333-344.
    6. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    7. Marz, Waldemar & Pfeiffer, Johannes, 2020. "Petrodollar recycling, oil monopoly, and carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    8. Marie-Catherine Riekhof & Johannes Bröcker, 2017. "Does The Adverse Announcement Effect Of Climate Policy Matter? — A Dynamic General Equilibrium Analysis," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-34, May.
    9. Julien Daubanes & Pierre Lasserre, 2019. "The supply of non-renewable resources," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 1084-1111, August.
    10. van der Meijden, Gerard & Ryszka, Karolina & Withagen, Cees, 2018. "Double limit pricing," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 153-167.
    11. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    12. Lin, Boqiang & Zhao, Hengsong, 2023. "Evaluating current effects of upcoming EU Carbon Border Adjustment Mechanism: Evidence from China's futures market," Energy Policy, Elsevier, vol. 177(C).
    13. Marc GRONWALD & Ngo Van LONG & Luise ROEPKE, 2017. "Three Degrees of Green Paradox: The Weak, The Strong, and the Extreme Green Paradox," Cahiers de recherche 02-2017, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    14. Benchekroun, Hassan & van der Meijden, Gerard & Withagen, Cees, 2020. "OPEC, unconventional oil and climate change - On the importance of the order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    15. Najm, Sarah, 2019. "The green paradox and budgetary institutions," Energy Policy, Elsevier, vol. 133(C).
    16. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    17. Di Maria, Corrado & Lange, Ian & van der Werf, Edwin, 2014. "Should we be worried about the green paradox? Announcement effects of the Acid Rain Program," European Economic Review, Elsevier, vol. 69(C), pages 143-162.
    18. Akkaya Sahin & Bakkal Ufuk, 2020. "Carbon Leakage Along with the Green Paradox Against Carbon Abatement? A Review Based on Carbon Tax," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 25-44, June.
    19. Marc Gronwald & Ngo Van Long & Luise Röpke, 2013. "Simultaneous Supplies of Dirty and Green Fuels with Capacity Constraint: Is there a Green Paradox?," CESifo Working Paper Series 4360, CESifo.
    20. Marc Gronwald & Ngo Long & Luise Roepke, 2017. "Simultaneous Supplies of Dirty Energy and Capacity Constrained Clean Energy: Is There a Green Paradox?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 47-64, September.

    More about this item

    Keywords

    Green paradox; Climate change; Fuel mandates; Renewable energy subsidies; Carbon taxes;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988320303546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.