IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v124y2023ics014098832300378x.html
   My bibliography  Save this article

A new multilayer network for measuring interconnectedness among the energy firms

Author

Listed:
  • Dai, Zhifeng
  • Tang, Rui
  • Zhang, Xiaotong

Abstract

In this paper, we study the connectedness among 32 energy firms listed in the United States from January 2014 to November 2022. Specifically, we construct a new linear model based on Diebold and Yilmaz's (2012, 2014) approach and Granger causality to estimate the correlation between firms. In addition, we construct a multilayer network containing information on returns, volatilities and extreme risks and measure the network's topological properties from static and dynamic perspectives, respectively. Our empirical results suggest that multilayer networks can be of great use in understanding the relationships among energy firm stocks. Some interesting points include: the oil & gas sector dominates the energy sector; we should focus more on firms with large market capitalization, which are usually strong influence points in the network; the volatility layer is more connected than the return and risk layers; and the impact of the COVID-19 on energy firms is broader and more profound than that of Brexit, the US shale gas revolution, and the US-China trade war.

Suggested Citation

  • Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s014098832300378x
    DOI: 10.1016/j.eneco.2023.106880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832300378X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poledna, Sebastian & Molina-Borboa, José Luis & Martínez-Jaramillo, Serafín & van der Leij, Marco & Thurner, Stefan, 2015. "The multi-layer network nature of systemic risk and its implications for the costs of financial crises," Journal of Financial Stability, Elsevier, vol. 20(C), pages 70-81.
    2. David C Broadstock & Rui Wang & Dayong Zhang, 2014. "The direct and indirect effects of oil shocks on energy related stocks," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 146, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    5. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    6. Restrepo, Natalia & Uribe, Jorge M. & Manotas, Diego, 2018. "Financial risk network architecture of energy firms," Applied Energy, Elsevier, vol. 215(C), pages 630-642.
    7. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    8. Mensi, Walid & Hammoudeh, Shawkat & Al-Jarrah, Idries Mohammad Wanas & Sensoy, Ahmet & Kang, Sang Hoon, 2017. "Dynamic risk spillovers between gold, oil prices and conventional, sustainability and Islamic equity aggregates and sectors with portfolio implications," Energy Economics, Elsevier, vol. 67(C), pages 454-475.
    9. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
    10. Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
    11. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    12. Ma, Yan-Ran & Ji, Qiang & Wu, Fei & Pan, Jiaofeng, 2021. "Financialization, idiosyncratic information and commodity co-movements," Energy Economics, Elsevier, vol. 94(C).
    13. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    14. Gang-Jin Wang & Shuyue Yi & Chi Xie & H. Eugene Stanley, 2021. "Multilayer information spillover networks: measuring interconnectedness of financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1163-1185, July.
    15. Filis, George & Degiannakis, Stavros & Floros, Christos, 2011. "Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 152-164, June.
    16. Ouyang, Zi-sheng & Liu, Meng-tian & Huang, Su-su & Yao, Ting, 2022. "Does the source of oil price shocks matter for the systemic risk?," Energy Economics, Elsevier, vol. 109(C).
    17. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2011. "New evidence on oil price and firm returns," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3253-3262.
    18. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    19. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    20. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    21. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    22. Yongmiao Hong & Haitao Li & Feng Zhao, 2004. "Out-of-Sample Performance of Discrete-Time Spot Interest Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 457-473, October.
    23. Huang, Chuangxia & Zhao, Xian & Deng, Yunke & Yang, Xiaoguang & Yang, Xin, 2022. "Evaluating influential nodes for the Chinese energy stocks based on jump volatility spillover network," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 81-94.
    24. Miller, J. Isaac & Ratti, Ronald A., 2009. "Crude oil and stock markets: Stability, instability, and bubbles," Energy Economics, Elsevier, vol. 31(4), pages 559-568, July.
    25. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    26. Xiao, Jihong & Wang, Yudong, 2022. "Macroeconomic uncertainty, speculation, and energy futures returns: Evidence from a quantile regression," Energy, Elsevier, vol. 241(C).
    27. Dai, Zhifeng & Zhang, Xiaotong, 2023. "Climate policy uncertainty and risks taken by the bank: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 87(C).
    28. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    29. Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.
    30. Dai, Zhifeng & Zhu, Haoyang, 2022. "Time-varying spillover effects and investment strategies between WTI crude oil, natural gas and Chinese stock markets related to belt and road initiative," Energy Economics, Elsevier, vol. 108(C).
    31. Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
    32. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    33. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    34. Ma, Yan-Ran & Zhang, Dayong & Ji, Qiang & Pan, Jiaofeng, 2019. "Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter?," Energy Economics, Elsevier, vol. 81(C), pages 536-544.
    35. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan & Plakandaras, Vasilios, 2018. "Dynamic connectedness of uncertainty across developed economies: A time-varying approach," Economics Letters, Elsevier, vol. 166(C), pages 63-75.
    36. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    37. Zhifeng Dai & Huan Zhu, 2020. "A Modified Hestenes-Stiefel-Type Derivative-Free Method for Large-Scale Nonlinear Monotone Equations," Mathematics, MDPI, vol. 8(2), pages 1-14, January.
    38. Broadstock, David C. & Wang, Rui & Zhang, Dayong, 2014. "Direct and indirect oil shocks and their impacts upon energy related stocks," Economic Systems, Elsevier, vol. 38(3), pages 451-467.
    39. Wang, Gang-Jin & Wan, Li & Feng, Yusen & Xie, Chi & Uddin, Gazi Salah & Zhu, You, 2023. "Interconnected multilayer networks: Quantifying connectedness among global stock and foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    40. Wu, Fei & Xiao, Xuanqi & Zhou, Xinyu & Zhang, Dayong & Ji, Qiang, 2022. "Complex risk contagions among large international energy firms: A multi-layer network analysis," Energy Economics, Elsevier, vol. 114(C).
    41. Borjigin, Sumuya & Yang, Yating & Yang, Xiaoguang & Sun, Leilei, 2018. "Econometric testing on linear and nonlinear dynamic relation between stock prices and macroeconomy in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 107-115.
    42. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    43. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    44. Xiao, Jihong & Wang, Yudong, 2021. "Investor attention and oil market volatility: Does economic policy uncertainty matter?," Energy Economics, Elsevier, vol. 97(C).
    45. Lai, Yujie & Hu, Yibo, 2021. "A study of systemic risk of global stock markets under COVID-19 based on complex financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    46. Wang, TianTian & Zhang, Dayong & Clive Broadstock, David, 2019. "Financialization, fundamentals, and the time-varying determinants of US natural gas prices," Energy Economics, Elsevier, vol. 80(C), pages 707-719.
    47. Gabauer, David & Gupta, Rangan, 2018. "On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach," Economics Letters, Elsevier, vol. 171(C), pages 63-71.
    48. Geng, Jiang-Bo & Liu, Changyu & Ji, Qiang & Zhang, Dayong, 2021. "Do oil price changes really matter for clean energy returns?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    49. Musmeci, Nicoló & Nicosia, Vincenzo & Aste, Tomaso & Di Matteo, Tiziana & Latora, Vito, 2017. "The multiplex dependency structure of financial markets," LSE Research Online Documents on Economics 85337, London School of Economics and Political Science, LSE Library.
    50. Zhang, Dayong, 2017. "Oil shocks and stock markets revisited: Measuring connectedness from a global perspective," Energy Economics, Elsevier, vol. 62(C), pages 323-333.
    51. Dai, Zhifeng & Zhu, Haoyang, 2023. "Dynamic risk spillover among crude oil, economic policy uncertainty and Chinese financial sectors," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 421-450.
    52. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    53. Gong, Jue & Wang, Gang-Jin & Zhou, Yang & Zhu, You & Xie, Chi & Foglia, Matteo, 2023. "Spreading of cross-market volatility information: Evidence from multiplex network analysis of volatility spillovers," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    54. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    55. Bali, Turan G., 2000. "Testing the Empirical Performance of Stochastic Volatility Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(2), pages 191-215, June.
    56. Wang, Gang-Jin & Xiong, Lu & Zhu, You & Xie, Chi & Foglia, Matteo, 2022. "Multilayer network analysis of investor sentiment and stock returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.
    2. Naeem, Muhammad Abubakr & Senthilkumar, Arunachalam & Arfaoui, Nadia & Mohnot, Rajesh, 2024. "Mapping fear in financial markets: Insights from dynamic networks and centrality measures," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    2. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    3. Chen, Yan & Wang, Gang-Jin & Zhu, You & Xie, Chi & Uddin, Gazi Salah, 2023. "Quantile connectedness and the determinants between FinTech and traditional financial institutions: Evidence from China," Global Finance Journal, Elsevier, vol. 58(C).
    4. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    5. Foglia, Matteo & Di Tommaso, Caterina & Wang, Gang-Jin & Pacelli, Vincenzo, 2024. "Interconnectedness between stock and credit markets: The role of European G-SIBs in a multilayer perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    6. Ma, Yan-Ran & Zhang, Dayong & Ji, Qiang & Pan, Jiaofeng, 2019. "Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter?," Energy Economics, Elsevier, vol. 81(C), pages 536-544.
    7. Wang, Gang-Jin & Xiong, Lu & Zhu, You & Xie, Chi & Foglia, Matteo, 2022. "Multilayer network analysis of investor sentiment and stock returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    8. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    9. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    10. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    11. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
    12. Chan, Ying Tung & Qiao, Hui, 2023. "Volatility spillover between oil and stock prices: Structural connectedness based on a multi-sector DSGE model approach with Bayesian estimation," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 265-286.
    13. Liu, Zhenhua & Shi, Xunpeng & Zhai, Pengxiang & Wu, Shan & Ding, Zhihua & Zhou, Yuqin, 2021. "Tail risk connectedness in the oil-stock nexus: Evidence from a novel quantile spillover approach," Resources Policy, Elsevier, vol. 74(C).
    14. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    15. Gong, Jue & Wang, Gang-Jin & Zhou, Yang & Zhu, You & Xie, Chi & Foglia, Matteo, 2023. "Spreading of cross-market volatility information: Evidence from multiplex network analysis of volatility spillovers," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    16. Dai, Zhifeng & Zhu, Haoyang, 2023. "Dynamic risk spillover among crude oil, economic policy uncertainty and Chinese financial sectors," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 421-450.
    17. Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2021. "How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 70(C).
    18. Foglia, Matteo & Addi, Abdelhamid & Wang, Gang-Jin & Angelini, Eliana, 2022. "Bearish Vs Bullish risk network: A Eurozone financial system analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    19. Liu, Pan & Power, Gabriel J. & Vedenov, Dmitry, 2021. "Fair-weather Friends? Sector-specific volatility connectedness and transmission," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 712-736.
    20. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:124:y:2023:i:c:s014098832300378x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.