IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i4p84-d349823.html
   My bibliography  Save this article

Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions

Author

Listed:
  • Nikolaos Antonakakis

    (Department of Business and Management, Webster Vienna Private University, Praterstraße 23, 1020 Vienna, Austria
    Economics and Finance Subject Group, Portsmouth Business School, University of Portsmouth, Portland Street, Portsmouth PO1 3DE, UK)

  • Ioannis Chatziantoniou

    (Economics and Finance Subject Group, Portsmouth Business School, University of Portsmouth, Portland Street, Portsmouth PO1 3DE, UK)

  • David Gabauer

    (Department of Business and Management, Webster Vienna Private University, Praterstraße 23, 1020 Vienna, Austria
    Institute of Applied Statistics, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria)

Abstract

In this study, we enhance the dynamic connectedness measures originally introduced by Diebold and Yılmaz (2012, 2014) with a time-varying parameter vector autoregressive model (TVP-VAR) which predicates upon a time-varying variance-covariance structure. This framework allows to capture possible changes in the underlying structure of the data in a more flexible and robust manner. Specifically, there is neither a need to arbitrarily set the rolling-window size nor a loss of observations in the calculation of the dynamic measures of connectedness, as no rolling-window analysis is involved. Given that the proposed framework rests on multivariate Kalman filters, it is less sensitive to outliers. Furthermore, we emphasise the merits of this approach by conducting Monte Carlo simulations. We put our framework into practice by investigating dynamic connectedness measures of the four most traded foreign exchange rates, comparing the TVP-VAR results to those obtained from three different rolling-window settings. Finally, we propose uncertainty measures for both TVP-VAR-based and rolling-window VAR-based dynamic connectedness measures.

Suggested Citation

  • Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:4:p:84-:d:349823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/4/84/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/4/84/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chatziantoniou, Ioannis & Gabauer, David, 2021. "EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 1-14.
    2. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan, 2019. "International monetary policy spillovers: Evidence from a time-varying parameter vector autoregression," International Review of Financial Analysis, Elsevier, vol. 65(C).
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Geert Bekaert & Michael Ehrmann & Marcel Fratzscher & Arnaud Mehl, 2014. "The Global Crisis and Equity Market Contagion," Journal of Finance, American Finance Association, vol. 69(6), pages 2597-2649, December.
    5. Alter, Adrian & Beyer, Andreas, 2014. "The dynamics of spillover effects during the European sovereign debt turmoil," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 134-153.
    6. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    7. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    8. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    9. Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1371-1390, June.
    10. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    11. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    12. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    13. Awartani, Basel & Maghyereh, Aktham Issa, 2013. "Dynamic spillovers between oil and stock markets in the Gulf Cooperation Council Countries," Energy Economics, Elsevier, vol. 36(C), pages 28-42.
    14. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    15. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    16. McMillan, David G. & Speight, Alan E.H., 2010. "Return and volatility spillovers in three euro exchange rates," Journal of Economics and Business, Elsevier, vol. 62(2), pages 79-93, March.
    17. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    18. Antonakakis, Nikolaos, 2012. "Exchange return co-movements and volatility spillovers before and after the introduction of euro," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1091-1109.
    19. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    20. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "Is the 2007 US Sub-Prime Financial Crisis So Different?: An International Historical Comparison," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 56(3), pages 291-299.
    21. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    22. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    23. repec:wsr:wpaper:y:2012:i:080 is not listed on IDEAS
    24. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan & Plakandaras, Vasilios, 2018. "Dynamic connectedness of uncertainty across developed economies: A time-varying approach," Economics Letters, Elsevier, vol. 166(C), pages 63-75.
    25. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    26. Antonakakis, Nikolaos & Gabauer, David, 2017. "Refined Measures of Dynamic Connectedness based on TVP-VAR," MPRA Paper 78282, University Library of Munich, Germany.
    27. Lutz Kilian, 1999. "Finite-Sample Properties of Percentile and Percentile-t Bootstrap Confidence Intervals for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 652-660, November.
    28. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan, 2019. "Greek economic policy uncertainty: Does it matter for Europe? Evidence from a dynamic connectedness decomposition approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    29. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    30. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    31. Gabauer, David & Gupta, Rangan, 2018. "On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach," Economics Letters, Elsevier, vol. 171(C), pages 63-71.
    32. Thomas J. Fisher & Colin M. Gallagher, 2012. "New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 777-787, June.
    33. Petrova, Katerina, 2019. "A quasi-Bayesian local likelihood approach to time varying parameter VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 286-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    2. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    3. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    4. Ioannis Chatziantoniou & David Gabauer & Hardik A. Marfatia, 2022. "Dynamic connectedness and spillovers across sectors: Evidence from the Indian stock market," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(3), pages 283-300, July.
    5. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    6. Chatziantoniou, Ioannis & Gabauer, David & Perez de Gracia, Fernando, 2022. "Tail risk connectedness in the refined petroleum market: A first look at the impact of the COVID-19 pandemic," Energy Economics, Elsevier, vol. 111(C).
    7. Zhang, Yulian & Hamori, Shigeyuki, 2021. "Do news sentiment and the economic uncertainty caused by public health events impact macroeconomic indicators? Evidence from a TVP-VAR decomposition approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 145-162.
    8. Mahdi Ghaemi Asl & Oluwasegun B. Adekoya & Muhammad Mahdi Rashidi, 2023. "Quantiles dependence and dynamic connectedness between distributed ledger technology and sectoral stocks: enhancing the supply chain and investment decisions with digital platforms," Annals of Operations Research, Springer, vol. 327(1), pages 435-464, August.
    9. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan, 2019. "International monetary policy spillovers: Evidence from a time-varying parameter vector autoregression," International Review of Financial Analysis, Elsevier, vol. 65(C).
    10. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    11. Chatziantoniou, Ioannis & Gabauer, David & Gupta, Rangan, 2023. "Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach," Resources Policy, Elsevier, vol. 84(C).
    12. Chatziantoniou, Ioannis & Gabauer, David, 2021. "EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 1-14.
    13. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    14. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    15. David Gabauer & Sowmya Subramaniam & Rangan Gupta, 2022. "On the transmission mechanism of Asia‐Pacific yield curve characteristics," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 473-488, January.
    16. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan, 2019. "Greek economic policy uncertainty: Does it matter for Europe? Evidence from a dynamic connectedness decomposition approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Gabauer, David & Gupta, Rangan, 2020. "Spillovers across macroeconomic, financial and real estate uncertainties: A time-varying approach," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 167-173.
    18. Abakah, Emmanuel Joel Aikins & Brahim, Mariem & Carlotti, Jean-Etienne & Tiwari, Aviral Kumar & Mensi, Walid, 2024. "Extreme downside risk connectedness and portfolio hedging among the G10 currencies," International Economics, Elsevier, vol. 178(C).
    19. Nikolaos Antonakakis & David Gabauer & Rangan Gupta, 2018. "Greek Economic Policy Uncertainty: Does it Matter for the European Union?," Working Papers 201840, University of Pretoria, Department of Economics.
    20. André, Christophe & Gabauer, David & Gupta, Rangan, 2021. "Time-varying spillovers between housing sentiment and housing market in the United States☆," Finance Research Letters, Elsevier, vol. 42(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:4:p:84-:d:349823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.