IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i22p5685-5699.html
   My bibliography  Save this article

Modeling natural gas market volatility using GARCH with different distributions

Author

Listed:
  • Lv, Xiaodong
  • Shan, Xian

Abstract

In this paper, we model natural gas market volatility using GARCH-class models with long memory and fat-tail distributions. First, we forecast price volatilities of spot and futures prices. Our evidence shows that none of the models can consistently outperform others across different criteria of loss functions. We can obtain greater forecasting accuracy by taking the stylized fact of fat-tail distributions into account. Second, we forecast volatility of basis defined as the price differential between spot and futures. Our evidence shows that nonlinear GARCH-class models with asymmetric effects have the greatest forecasting accuracy. Finally, we investigate the source of forecasting loss of models. Our findings based on a detrending moving average indicate that GARCH models cannot capture multifractality in natural gas markets. This may be the plausible explanation for the source of model forecasting losses.

Suggested Citation

  • Lv, Xiaodong & Shan, Xian, 2013. "Modeling natural gas market volatility using GARCH with different distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5685-5699.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:22:p:5685-5699
    DOI: 10.1016/j.physa.2013.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113006481
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    2. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    3. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    4. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2010. "Cross-correlations between Chinese A-share and B-share markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5468-5478.
    5. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    6. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    7. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    8. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    9. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    12. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    13. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    14. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    15. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    16. Norouzzadeh, P. & Jafari, G.R., 2005. "Application of multifractal measures to Tehran price index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 609-627.
    17. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    18. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    19. Wang, Yudong & Liu, Li & Gu, Rongbao & Cao, Jianjun & Wang, Haiyan, 2010. "Analysis of market efficiency for the Shanghai stock market over time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1635-1642.
    20. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    21. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    22. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    23. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    24. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    25. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    26. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    27. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    28. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    29. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    30. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    31. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Yasir & Sitara Afzal & Khalid Latif & Ghulam Mujtaba Chaudhary & Nazish Yameen Malik & Farhan Shahzad & Oh-young Song, 2020. "An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    2. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    3. Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Do, Hung Xuan & Smyth, Russell, 2020. "Exploiting the heteroskedasticity in measurement error to improve volatility predictions in oil and biofuel feedstock markets," Energy Economics, Elsevier, vol. 86(C).
    4. Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Resources Policy, Elsevier, vol. 78(C).
    5. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    6. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    7. Lahmiri, Salim, 2017. "Modeling and predicting historical volatility in exchange rate markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 387-395.
    8. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    9. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2018. "Modeling volatility dynamics using non-Gaussian stochastic volatility model based on band matrix routine," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 193-201.
    10. Luo, Keyu & Guo, Qiang & Li, Xiafei, 2022. "Can the return connectedness indices from grey energy to natural gas help to forecast the natural gas returns?," Energy Economics, Elsevier, vol. 109(C).
    11. Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
    12. Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
    13. Lahmiri, Salim, 2016. "Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 388-396.
    14. Jonathan Berrisch & Florian Ziel, 2022. "Distributional modeling and forecasting of natural gas prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1065-1086, September.
    15. Lin, XuXun & Yuan, PengCheng, 2018. "A dynamic parking charge optimal control model under perspective of commuters’ evolutionary game behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1096-1110.
    16. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    17. Lahmiri, Salim, 2017. "Asymmetric and persistent responses in price volatility of fertilizers through stable and unstable periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 405-414.
    18. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    19. Jonathan Berrisch & Florian Ziel, 2020. "Distributional Modeling and Forecasting of Natural Gas Prices," Papers 2010.06227, arXiv.org, revised Aug 2021.
    20. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    2. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    3. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    4. Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
    5. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    6. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    7. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    8. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    9. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    10. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    11. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    12. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    13. Di Sanzo, Silvestro, 2018. "A Markov switching long memory model of crude oil price return volatility," Energy Economics, Elsevier, vol. 74(C), pages 351-359.
    14. Chen, Hongtao & Wu, Chongfeng, 2011. "Forecasting volatility in Shanghai and Shenzhen markets based on multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2926-2935.
    15. Kang, Sang Hoon & Yoon, Seong-Min, 2013. "Modeling and forecasting the volatility of petroleum futures prices," Energy Economics, Elsevier, vol. 36(C), pages 354-362.
    16. Liu, Li & Wan, Jieqiu, 2011. "A study of correlations between crude oil spot and futures markets: A rolling sample test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3754-3766.
    17. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    18. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    19. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
    20. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:22:p:5685-5699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.