IDEAS home Printed from https://ideas.repec.org/a/fip/fedker/00070.html
   My bibliography  Save this article

Machine Learning Approaches to Macroeconomic Forecasting

Author

Listed:
  • Aaron Smalter Hall

Abstract

Forecasting macroeconomic conditions can be challenging, requiring forecasters to make many discretionary choices about the data and methods they use. Although forecasters underpin the choices they make about models and complexity with economic intuition and judgement, these assumptions can be flawed. {{p}} Machine learning approaches, on the other hand, automate as many of those choices as possible in a manner that is not subject to the discretion of the forecaster. Aaron Smalter Hall applies machine learning techniques to find an optimal forecasting model for the unemployment rate. His results suggest that when supplied with diverse and complex data, a machine learning model can outperform simpler time-series models as well as a consensus of professional forecasters, with better performance at shorter horizons. In particular, his results show that a machine learning model can identify turning points in the unemployment rate earlier than competing methods.

Suggested Citation

  • Aaron Smalter Hall, 2018. "Machine Learning Approaches to Macroeconomic Forecasting," Economic Review, Federal Reserve Bank of Kansas City, issue Q IV, pages 63-81.
  • Handle: RePEc:fip:fedker:00070
    DOI: 10.18651/ER/4q18SmalterHall
    as

    Download full text from publisher

    File URL: https://www.kansascityfed.org/documents/921/2018-Machine%20Learning%20Approaches%20to%20Macroeconomic%20Forecasting.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18651/ER/4q18SmalterHall?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marijn A. Bolhuis & Brett Rayner, 2020. "The More the Merrier? A Machine Learning Algorithm for Optimal Pooling of Panel Data," IMF Working Papers 2020/044, International Monetary Fund.
    2. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    3. Anastasios Petropoulos & Vassilis Siakoulis & Konstantinos P. Panousis & Loukas Papadoulas & Sotirios Chatzis, 2023. "Macroeconomic forecasting and sovereign risk assessment using deep learning techniques," Papers 2301.09856, arXiv.org.
    4. Phi-Hung Nguyen & Jung-Fa Tsai & Ihsan Erdem Kayral & Ming-Hua Lin, 2021. "Unemployment Rates Forecasting with Grey-Based Models in the Post-COVID-19 Period: A Case Study from Vietnam," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    5. Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.

    More about this item

    Keywords

    Unemployment;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedker:00070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zach Kastens (email available below). General contact details of provider: https://edirc.repec.org/data/frbkcus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.