IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v174y2010i1p121-13410.1007-s10479-009-0538-z.html
   My bibliography  Save this article

Alternating local search based VNS for linear classification

Author

Listed:
  • Frank Plastria
  • Steven De Bruyne
  • Emilio Carrizosa

Abstract

We consider the linear classification method consisting of separating two sets of points in d-space by a hyperplane. We wish to determine the hyperplane which minimises the sum of distances from all misclassified points to the hyperplane. To this end two local descent methods are developed, one grid-based and one optimisation-theory based, and are embedded into a VNS metaheuristic scheme. Computational results show these approaches to be complementary, leading to a single hybrid VNS strategy which combines both approaches to exploit the strong points of each. Extensive computational tests show that the resulting method can always be expected to approach the global optimum close enough that any deviations from the global optimum are irrelevant with respect to the classification power. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • Frank Plastria & Steven De Bruyne & Emilio Carrizosa, 2010. "Alternating local search based VNS for linear classification," Annals of Operations Research, Springer, vol. 174(1), pages 121-134, February.
  • Handle: RePEc:spr:annopr:v:174:y:2010:i:1:p:121-134:10.1007/s10479-009-0538-z
    DOI: 10.1007/s10479-009-0538-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0538-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0538-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Plastria & E. Carrizosa, 2001. "Gauge Distances and Median Hyperplanes," Journal of Optimization Theory and Applications, Springer, vol. 110(1), pages 173-182, July.
    2. Emilio Carrizosa & Frank Plastria, 2008. "Optimal Expected-Distance Separating Halfspace," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 662-677, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    2. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Carrizosa & Frank Plastria, 2008. "Optimal Expected-Distance Separating Halfspace," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 662-677, August.
    2. Jack Brimberg & Robert Schieweck & Anita Schöbel, 2015. "Locating a median line with partial coverage distance," Journal of Global Optimization, Springer, vol. 62(2), pages 371-389, June.
    3. Sönke Behrends & Anita Schöbel, 2020. "Generating Valid Linear Inequalities for Nonlinear Programs via Sums of Squares," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 911-935, September.
    4. Kristian Sabo & Rudolf Scitovski & Ivan Vazler, 2011. "Searching for a Best Least Absolute Deviations Solution of an Overdetermined System of Linear Equations Motivated by Searching for a Best Least Absolute Deviations Hyperplane on the Basis of Given Dat," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 293-314, May.
    5. Marc Ciligot-Travain & Sado Traoré, 2014. "On a robustness property in single-facility location in continuous space," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 321-330, April.
    6. Carrizosa, Emilio & Goerigk, Marc & Schöbel, Anita, 2017. "A biobjective approach to recoverable robustness based on location planning," European Journal of Operational Research, Elsevier, vol. 261(2), pages 421-435.
    7. Jack Brimberg & Henrik Juel & Mark-Christoph Körner & Anita Schöbel, 2014. "Locating an axis-parallel rectangle on a Manhattan plane," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 185-207, April.
    8. Diaz-Banez, J. M. & Mesa, J. A. & Schobel, A., 2004. "Continuous location of dimensional structures," European Journal of Operational Research, Elsevier, vol. 152(1), pages 22-44, January.
    9. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka, 2016. "Maximal Covering Location Problems on networks with regional demand," Omega, Elsevier, vol. 64(C), pages 77-85.
    10. Baldomero-Naranjo, Marta & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M., 2020. "Tightening big Ms in integer programming formulations for support vector machines with ramp loss," European Journal of Operational Research, Elsevier, vol. 286(1), pages 84-100.
    11. Rafael Blanquero & Emilio Carrizosa & Pierre Hansen, 2009. "Locating Objects in the Plane Using Global Optimization Techniques," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 837-858, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:174:y:2010:i:1:p:121-134:10.1007/s10479-009-0538-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.