Uncovering interpretable potential confounders in electronic medical records
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-28546-8
Download full text from publisher
Other versions of this item:
- Zeng, Jiaming & Gensheimer, Michael F. & Rubin, Daniel L. & Athey, Susan & Schachter, Ross D., 2021. "Uncovering Interpretable Potential Confounders in Electronic Medical Records," Research Papers 3950, Stanford University, Graduate School of Business.
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014.
"High-Dimensional Methods and Inference on Structural and Treatment Effects,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mozer, Reagan & Miratrix, Luke & Kaufman, Aaron Russell & Jason Anastasopoulos, L., 2020. "Matching with Text Data: An Experimental Evaluation of Methods for Matching Documents and of Measuring Match Quality," Political Analysis, Cambridge University Press, vol. 28(4), pages 445-468, October.
- Rajeev H. Dehejia & Sadek Wahba, 2002.
"Propensity Score-Matching Methods For Nonexperimental Causal Studies,"
The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
- Rajeev H. Dehejia & Sadek Wahba, 1998. "Propensity Score Matching Methods for Non-experimental Causal Studies," NBER Working Papers 6829, National Bureau of Economic Research, Inc.
- Abadie, Alberto & Imbens, Guido W., 2011.
"Bias-Corrected Matching Estimators for Average Treatment Effects,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
- Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
- Margaret E. Roberts & Brandon M. Stewart & Richard A. Nielsen, 2020. "Adjusting for Confounding with Text Matching," American Journal of Political Science, John Wiley & Sons, vol. 64(4), pages 887-903, October.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
- Ho, Daniel & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2011. "MatchIt: Nonparametric Preprocessing for Parametric Causal Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i08).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
- Takanobu Hirosawa & Yukinori Harada & Masashi Yokose & Tetsu Sakamoto & Ren Kawamura & Taro Shimizu, 2023. "Diagnostic Accuracy of Differential-Diagnosis Lists Generated by Generative Pretrained Transformer 3 Chatbot for Clinical Vignettes with Common Chief Complaints: A Pilot Study," IJERPH, MDPI, vol. 20(4), pages 1-10, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024.
"Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Susan Athey & Guido W. Imbens & Jonas Metzger & Evan M. Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," NBER Working Papers 26566, National Bureau of Economic Research, Inc.
- Susan Athey & Guido Imbens & Jonas Metzger & Evan Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," Papers 1909.02210, arXiv.org, revised Jul 2020.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020.
"Optimal data collection for randomized control trials,"
The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
- Carneiro, Pedro & Lee, Sokbae & Wilhelm, Daniel, 2016. "Optimal Data Collection for Randomized Control Trials," IZA Discussion Papers 9908, Institute of Labor Economics (IZA).
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 15/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2019. "Optimal Data Collection for Randomized Control Trials," CeMMAP working papers CWP21/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 45/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2016. "Optimal Data Collection for Randomized Control Trials," Papers 1603.03675, arXiv.org, revised Aug 2016.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP45/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers 15/16, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Guido W. Imbens, 2020.
"Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
- Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
- Keyon Vafa & Susan Athey & David M. Blei, 2024.
"Estimating Wage Disparities Using Foundation Models,"
Papers
2409.09894, arXiv.org.
- Vafa, Keyon & Athey, Susan & Blei, David M., 2024. "Estimating Wage Disparities Using Foundation Models," Research Papers 4206, Stanford University, Graduate School of Business.
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020.
"Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed,"
Labour Economics, Elsevier, vol. 65(C).
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany’s programmes for long term unemployed," Economics Working Paper Series 1910, University of St. Gallen, School of Economics and Political Science.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? : The case of Germany's programmes for long term unemployed," IAB-Discussion Paper 202005, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the Estimation of the Propensity Score by Machine Learning Improve Matching Estimation? The Case of Germany's Programmes for Long Term Unemployed," IZA Discussion Papers 12526, Institute of Labor Economics (IZA).
- Koch, Nicolas & Basse Mama, Houdou, 2019. "Does the EU Emissions Trading System induce investment leakage? Evidence from German multinational firms," Energy Economics, Elsevier, vol. 81(C), pages 479-492.
- Helmut Wasserbacher & Martin Spindler, 2024. "Credit Ratings: Heterogeneous Effect on Capital Structure," Papers 2406.18936, arXiv.org.
- Ferman, Bruno, 2021.
"Matching estimators with few treated and many control observations,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
- Ferman, Bruno, 2017. "Matching Estimators with Few Treated and Many Control Observations," MPRA Paper 78940, University Library of Munich, Germany.
- Bruno Ferman, 2019. "Matching Estimators with Few Treated and Many Control Observations," Papers 1909.05093, arXiv.org, revised Mar 2021.
- Harsh Parikh & Cynthia Rudin & Alexander Volfovsky, 2018. "MALTS: Matching After Learning to Stretch," Papers 1811.07415, arXiv.org, revised Jun 2023.
- Goenner, Cullen F, 2016. "The policy impact of new rules for loan participation on credit union returns," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 198-210.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Zhexiao Lin & Peng Ding & Fang Han, 2021. "Estimation based on nearest neighbor matching: from density ratio to average treatment effect," Papers 2112.13506, arXiv.org.
- Marco Mariani & Fabrizia Mealli, 2018. "The Effects of R&D Subsidies to Small and Medium-Sized Enterprises. Evidence from a Regional Program," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 4(2), pages 249-281, July.
- Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
- Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
- Huang, Wei & Li, Jinxian & Zhang, Qiang, 2019. "Information asymmetry, legal environment, and family firm governance: Evidence from IPO underpricing in China," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28546-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.