IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v227y2013i1p22-29.html
   My bibliography  Save this article

A distance-based point-reassignment heuristic for the k-hyperplane clustering problem

Author

Listed:
  • Amaldi, Edoardo
  • Coniglio, Stefano

Abstract

We consider the k-Hyperplane Clustering problem where, given a set of m points in Rn, we have to partition the set into k subsets (clusters) and determine a hyperplane for each of them, so as to minimize the sum of the squares of the Euclidean distances between the points and the hyperplane of the corresponding clusters. We give a nonconvex mixed-integer quadratically constrained quadratic programming formulation for the problem. Since even very small-size instances are challenging for state-of-the-art spatial branch-and-bound solvers like Couenne, we propose a heuristic in which many “critical” points are reassigned at each iteration. Such points, which are likely to be ill-assigned in the current solution, are identified using a distance-based criterion and their number is progressively decreased to zero. Our algorithm outperforms the best available one proposed by Bradley and Mangasarian on a set of real-world and structured randomly generated instances. For the largest instances, we obtain an average improvement in the solution quality of 54%.

Suggested Citation

  • Amaldi, Edoardo & Coniglio, Stefano, 2013. "A distance-based point-reassignment heuristic for the k-hyperplane clustering problem," European Journal of Operational Research, Elsevier, vol. 227(1), pages 22-29.
  • Handle: RePEc:eee:ejores:v:227:y:2013:i:1:p:22-29
    DOI: 10.1016/j.ejor.2012.09.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171200690X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.09.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pando Georgiev & Fabian Theis & Andrzej Cichocki & Hovagim Bakardjian, 2007. "Sparse Component Analysis: a New Tool for Data Mining," Springer Optimization and Its Applications, in: Panos M. Pardalos & Vladimir L. Boginski & Alkis Vazacopoulos (ed.), Data Mining in Biomedicine, pages 91-116, Springer.
    2. Michael B. Teitz & Polly Bart, 1968. "Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph," Operations Research, INFORMS, vol. 16(5), pages 955-961, October.
    3. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    4. Olafsson, Sigurdur & Li, Xiaonan & Wu, Shuning, 2008. "Operations research and data mining," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1429-1448, June.
    5. Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.
    6. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    7. Mauricio Resende & Renato Werneck, 2007. "A fast swap-based local search procedure for location problems," Annals of Operations Research, Springer, vol. 150(1), pages 205-230, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catanzaro, Daniele & Coniglio, Stefano & Furini, Fabio, 2021. "On the exact separation of cover inequalities of maximum-depth," LIDAM Discussion Papers CORE 2021018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Zheng Wang & Wei Xu & Xiangpei Hu & Yong Wang, 2022. "Inventory allocation to robotic mobile-rack and picker-to-part warehouses at minimum order-splitting and replenishment costs," Annals of Operations Research, Springer, vol. 316(1), pages 467-491, September.
    3. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brimberg, Jack & Drezner, Zvi & Mladenović, Nenad & Salhi, Said, 2014. "A new local search for continuous location problems," European Journal of Operational Research, Elsevier, vol. 232(2), pages 256-265.
    2. Michael Brusco & Hans-Friedrich Köhn, 2009. "Exemplar-Based Clustering via Simulated Annealing," Psychometrika, Springer;The Psychometric Society, vol. 74(3), pages 457-475, September.
    3. B. Jayalakshmi & Alok Singh, 2017. "A hybrid artificial bee colony algorithm for the p-median problem with positive/negative weights," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 67-93, March.
    4. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    5. Wangshu Mu & Daoqin Tong, 2020. "On solving large p-median problems," Environment and Planning B, , vol. 47(6), pages 981-996, July.
    6. Sáez-Aguado, Jesús & Trandafir, Paula Camelia, 2012. "Some heuristic methods for solving p-median problems with a coverage constraint," European Journal of Operational Research, Elsevier, vol. 220(2), pages 320-327.
    7. Abdolsalam Ghaderi & Mohammad Jabalameli & Farnaz Barzinpour & Ragheb Rahmaniani, 2012. "An Efficient Hybrid Particle Swarm Optimization Algorithm for Solving the Uncapacitated Continuous Location-Allocation Problem," Networks and Spatial Economics, Springer, vol. 12(3), pages 421-439, September.
    8. Tao Zhuolin & Zheng Qingjing & Kong Hui, 2018. "A Modified Gravity p-Median Model for Optimizing Facility Locations," Journal of Systems Science and Information, De Gruyter, vol. 6(5), pages 421-434, October.
    9. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    10. Vladimir Marianov & Daniel Serra, 2009. "Median problems in networks," Economics Working Papers 1151, Department of Economics and Business, Universitat Pompeu Fabra.
    11. Miroslav Marić & Zorica Stanimirović & Srdjan Božović, 2015. "Hybrid metaheuristic method for determining locations for long-term health care facilities," Annals of Operations Research, Springer, vol. 227(1), pages 3-23, April.
    12. Irawan, Chandra Ade & Salhi, Said & Scaparra, Maria Paola, 2014. "An adaptive multiphase approach for large unconditional and conditional p-median problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 590-605.
    13. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    14. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    15. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    16. Francisco Casas & Claudio E. Torres & Ignacio Araya, 2022. "A heuristic search based on diversity for solving combinatorial problems," Journal of Heuristics, Springer, vol. 28(3), pages 287-328, June.
    17. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F., 2012. "Design and analysis of hybrid metaheuristics for the Reliability p-Median Problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 54-64.
    18. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2017. "Non-myopic relocation of idle mobility-on-demand vehicles as a dynamic location-allocation-queueing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 60-77.
    19. Antiopi Panteli & Basilis Boutsinas & Ioannis Giannikos, 2021. "On solving the multiple p-median problem based on biclustering," Operational Research, Springer, vol. 21(1), pages 775-799, March.
    20. Kim, Dong-Guen & Kim, Yeong-Dae, 2010. "A branch and bound algorithm for determining locations of long-term care facilities," European Journal of Operational Research, Elsevier, vol. 206(1), pages 168-177, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:227:y:2013:i:1:p:22-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.