IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v49y2001i1p169-174.html
   My bibliography  Save this article

Combining Minsum And Minmax: A Goal Programming Approach

Author

Listed:
  • Emilio Carrizosa

    (Facultad de Matemáticas, Universidad de Sevilla, C/ Tarfia s/n, 41012 Sevilla, Spain)

  • Dolores Romero-Morales

    (Decision and Information Sciences Department, Rotterdam School of Management, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands, and Facultad de Matemáticas, Universidad de Sevilla, C/ Tarfia s/n, 41012 Sevilla, Spain)

Abstract

A number of methods for multiple-objective optimization problems (MOP) give as solution to MOP the set of optimal solutions for some single-objective optimization problems associated with it. Well-known examples of these single-objective optimization problems are the minsum and the minmax. In this note, we propose a new parametric single-objective optimization problem associated with MOP by means of Goal Programming ideas. We show that the minsum and minmax are particular instances, so we are somehow combining minsum and minmax by means of a parameter. Moreover, such parameter has a clear meaning in the value space. Applications of this parametric problem to classical models in Locational Analysis are discussed.

Suggested Citation

  • Emilio Carrizosa & Dolores Romero-Morales, 2001. "Combining Minsum And Minmax: A Goal Programming Approach," Operations Research, INFORMS, vol. 49(1), pages 169-174, February.
  • Handle: RePEc:inm:oropre:v:49:y:2001:i:1:p:169-174
    DOI: 10.1287/opre.49.1.169.11190
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.49.1.169.11190
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.49.1.169.11190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erkut, Erhan & Neuman, Susan, 1989. "Analytical models for locating undesirable facilities," European Journal of Operational Research, Elsevier, vol. 40(3), pages 275-291, June.
    2. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongwei Zhang & Lihui Wu & Tao Peng & Shun Jia, 2018. "An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    2. Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo & M. Remedios Sillero-Denamiel, 2021. "A cost-sensitive constrained Lasso," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 121-158, March.
    3. V M Miori, 2011. "A multiple objective goal programming approach to the truckload routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1524-1532, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    2. Romero-Morales, Dolores & Carrizosa, Emilio & Conde, Eduardo, 1997. "Semi-obnoxious location models: A global optimization approach," European Journal of Operational Research, Elsevier, vol. 102(2), pages 295-301, October.
    3. Demirci, Mehmet & Bettinger, Pete, 2015. "Using mixed integer multi-objective goal programming for stand tending block designation: A case study from Turkey," Forest Policy and Economics, Elsevier, vol. 55(C), pages 28-36.
    4. Fleskens, Luuk & Graaff, Jan de, 2010. "Conserving natural resources in olive orchards on sloping land: Alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures," Agricultural Systems, Elsevier, vol. 103(8), pages 521-534, October.
    5. G Mavrotas & E Georgopoulou & S Mirasgedis & Y Sarafidis & D Lalas & V Hontou & N Gakis, 2009. "Multi-objective combinatorial optimization for selecting best available techniques (BAT) in the industrial sector: the COMBAT tool," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 906-920, July.
    6. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    7. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    8. Lili Mei & Deshi Ye & Yong Zhang, 2018. "Approximation strategy-proof mechanisms for obnoxious facility location on a line," Journal of Combinatorial Optimization, Springer, vol. 36(2), pages 549-571, August.
    9. Aouni, Belaid & Kettani, Ossama, 2001. "Goal programming model: A glorious history and a promising future," European Journal of Operational Research, Elsevier, vol. 133(2), pages 225-231, January.
    10. Pérez-Mesa, Juan Carlos & Galdeano-Gómez, Emilio & Salinas Andújar, Jose A., 2012. "Logistics network and externalities for short sea transport: An analysis of horticultural exports from southeast Spain," Transport Policy, Elsevier, vol. 24(C), pages 188-198.
    11. H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.
    12. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 2001. "Comments on properties of the minmax solutions in goal programming - a reply," European Journal of Operational Research, Elsevier, vol. 131(3), pages 685-686, June.
    13. Paul Berglund & Changhyun Kwon, 2014. "Robust Facility Location Problem for Hazardous Waste Transportation," Networks and Spatial Economics, Springer, vol. 14(1), pages 91-116, March.
    14. Zilla Sinuany-Stern, 2014. "Quadratic model for allocating operational budget in public and nonprofit organizations," Annals of Operations Research, Springer, vol. 221(1), pages 357-376, October.
    15. Fernando García & Francisco Guijarro & Javier Oliver, 2021. "A Multicriteria Goal Programming Model for Ranking Universities," Mathematics, MDPI, vol. 9(5), pages 1-17, February.
    16. Zgajnar, Jaka & Kavcic, Stane, 2011. "Weighted Goal Programming and Penalty Functions: Whole-farm Planning Approach Under Risk," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 118033, European Association of Agricultural Economists.
    17. Yapicioglu, Haluk & Smith, Alice E. & Dozier, Gerry, 2007. "Solving the semi-desirable facility location problem using bi-objective particle swarm," European Journal of Operational Research, Elsevier, vol. 177(2), pages 733-749, March.
    18. Mete Suleyman & Cil Zeynel Abidin & Özceylan Eren, 2018. "Location and Coverage Analysis of Bike- Sharing Stations in University Campus," Business Systems Research, Sciendo, vol. 9(2), pages 80-95, July.
    19. Tamiz, Mehrdad & Azmi, Rania A. & Jones, Dylan F., 2013. "On selecting portfolio of international mutual funds using goal programming with extended factors," European Journal of Operational Research, Elsevier, vol. 226(3), pages 560-576.
    20. Francisco Salas-Molina & Juan Antonio Rodr'iguez Aguilar & Filippo Bistaffa, 2020. "Shared value economics: an axiomatic approach," Papers 2006.00581, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:49:y:2001:i:1:p:169-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.