IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i4p2144-2162.html
   My bibliography  Save this article

SOS-SDP: An Exact Solver for Minimum Sum-of-Squares Clustering

Author

Listed:
  • Veronica Piccialli

    (University of Rome Tor Vergata, 00133 Roma RM, Italy)

  • Antonio M. Sudoso

    (University of Rome Tor Vergata, 00133 Roma RM, Italy)

  • Angelika Wiegele

    (Universität Klagenfurt, 9020 Klagenfurt, Austria)

Abstract

The minimum sum-of-squares clustering problem (MSSC) consists of partitioning n observations into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. In this paper, we propose an exact algorithm for the MSSC problem based on the branch-and-bound technique. The lower bound is computed by using a cutting-plane procedure in which valid inequalities are iteratively added to the Peng–Wei semidefinite programming (SDP) relaxation. The upper bound is computed with the constrained version of k -means in which the initial centroids are extracted from the solution of the SDP relaxation. In the branch-and-bound procedure, we incorporate instance-level must-link and cannot-link constraints to express knowledge about which data points should or should not be grouped together. We manage to reduce the size of the problem at each level, preserving the structure of the SDP problem itself. To the best of our knowledge, the obtained results show that the approach allows us to successfully solve, for the first time, real-world instances up to 4,000 data points.

Suggested Citation

  • Veronica Piccialli & Antonio M. Sudoso & Angelika Wiegele, 2022. "SOS-SDP: An Exact Solver for Minimum Sum-of-Squares Clustering," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2144-2162, July.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:2144-2162
    DOI: 10.1287/ijoc.2022.1166
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1166
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    2. Frank de Meijer & Renata Sotirov, 2021. "SDP-Based Bounds for the Quadratic Cycle Cover Problem via Cutting-Plane Augmented Lagrangian Methods and Reinforcement Learning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1262-1276, October.
    3. Caruso, G. & Gattone, S.A. & Fortuna, F. & Di Battista, T., 2021. "Cluster Analysis for mixed data: An application to credit risk evaluation," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    4. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    5. Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
    6. Michael Brusco, 2006. "A Repetitive Branch-and-Bound Procedure for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 347-363, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    2. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    3. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    4. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    5. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    6. Jos Berge & Henk Kiers, 1993. "An alternating least squares method for the weighted approximation of a symmetric matrix," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 115-118, March.
    7. Shimeng Huang & Henry Wolkowicz, 2018. "Low-rank matrix completion using nuclear norm minimization and facial reduction," Journal of Global Optimization, Springer, vol. 72(1), pages 5-26, September.
    8. Antti J. Tanskanen & Jani Lukkarinen & Kari Vatanen, 2016. "Random selection of factors preserves the correlation structure in a linear factor model to a high degree," Papers 1604.05896, arXiv.org, revised Dec 2018.
    9. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    10. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    11. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    12. W. Gibson, 1962. "On the least-squares orthogonalization of an oblique transformation," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 193-195, June.
    13. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    14. Jamie Fairbrother & Adam N. Letchford & Keith Briggs, 2018. "A two-level graph partitioning problem arising in mobile wireless communications," Computational Optimization and Applications, Springer, vol. 69(3), pages 653-676, April.
    15. Walter Kristof, 1967. "Orthogonal inter-battery factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 32(2), pages 199-227, June.
    16. Willem E. Saris & Marius de Pijper & Jan Mulder, 1978. "Optimal Procedures for Estimation of Factor Scores," Sociological Methods & Research, , vol. 7(1), pages 85-106, August.
    17. Merola, Giovanni Maria & Chen, Gemai, 2019. "Projection sparse principal component analysis: An efficient least squares method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 366-382.
    18. Juan Carlos Carrasco Baquero & Verónica Lucía Caballero Serrano & Fernando Romero Cañizares & Daisy Carolina Carrasco López & David Alejandro León Gualán & Rufino Vieira Lanero & Fernando Cobo-Gradín, 2023. "Water Quality Determination Using Soil and Vegetation Communities in the Wetlands of the Andes of Ecuador," Land, MDPI, vol. 12(8), pages 1-18, August.
    19. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    20. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:2144-2162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.