IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v190y2024ics0191261524001942.html
   My bibliography  Save this article

An aggregate matching and pick-up model for mobility-on-demand services

Author

Listed:
  • Li, Xinwei
  • Ke, Jintao
  • Yang, Hai
  • Wang, Hai
  • Zhou, Yaqian

Abstract

This paper presents an Aggregate Matching and Pick-up (AMP) model to delineate the matching and pick-up processes in mobility-on-demand (MoD) service markets by explicitly considering the matching mechanisms in terms of matching intervals and matching radii. With passenger demand rate, vehicle fleet size and matching strategies as inputs, the AMP model can well approximate drivers’ idle time and passengers’ waiting time for matching and pick-up by considering batch matching in a stationary state. Properties of the AMP model are then analyzed, including the relationship between passengers’ waiting time and drivers’ idle time, and their changes with market thickness, which is measured in terms of the passenger arrival rate (demand rate) and the number of active vehicles in service (supply). The model can also unify several prevailing inductive and deductive matching models used in the literature and spell out their specific application scopes. In particular, when the matching radius is sufficiently small, the model reduces to a Cobb–Douglas type matching model proposed by Yang and Yang (2011) for street-hailing taxi markets, in which the matching rate depends on the pool sizes of waiting passengers and idle vehicles. With a zero matching interval and a large matching radius, the model reduces to Castillo model developed by Castillo et al. (2017) that is based on an instant matching mechanism, or a bottleneck type queuing model in which passengers’ matching time is derived from a deterministic queue at a bottleneck with the arrival rate of idle vehicles as its capacity and waiting passengers as its customers. When both the matching interval and matching radius are relatively large, the model also reduces to the bottleneck type queuing model. The performance of the proposed AMP model is verified with simulation experiments.

Suggested Citation

  • Li, Xinwei & Ke, Jintao & Yang, Hai & Wang, Hai & Zhou, Yaqian, 2024. "An aggregate matching and pick-up model for mobility-on-demand services," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001942
    DOI: 10.1016/j.trb.2024.103070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.