IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v130y2019icp440-451.html
   My bibliography  Save this article

An analysis of the individual economics of ride-hailing drivers

Author

Listed:
  • Henao, Alejandro
  • Marshall, Wesley E.

Abstract

Ride-hailing companies are disrupting transportation at a large scale while also providing economic opportunities to millions of drivers. Companies such as Uber and Lyft constantly promote potential earnings on the order of $25–$35 per hour. Yet, the advertised earnings do not account for factors such as time spent without passengers, the need to travel back-and-forth between areas of low and high ridership, driver residential location, or driving expenses. By examining a unique and detailed dataset collected using ethnographic methods – primary data collected by one of the authors who became an independent contractor to drive for both Uber and Lyft in the Denver area – we examine actual earnings with three common expense scenarios to answer the question of how much ride-hailing drivers actually earn.

Suggested Citation

  • Henao, Alejandro & Marshall, Wesley E., 2019. "An analysis of the individual economics of ride-hailing drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 440-451.
  • Handle: RePEc:eee:transa:v:130:y:2019:i:c:p:440-451
    DOI: 10.1016/j.tra.2019.09.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419300333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.09.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Keith Chen & Judith A. Chevalier & Peter E. Rossi & Emily Oehlsen, 2019. "The Value of Flexible Work: Evidence from Uber Drivers," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2735-2794.
    2. Young, Mischa & Farber, Steven, 2019. "The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 383-392.
    3. Young, Mischa & Farber, Steven, 2019. "The Who, Why, and When of Uber and other Ride-hailing Trips: An Examination of a Large Sample Household Travel Survey," OSF Preprints x7ryj, Center for Open Science.
    4. Jonathan V. Hall & Alan B. Krueger, 2015. "An Analysis of the Labor Market for Uber's Driver-Partners in the United States," Working Papers 587, Princeton University, Department of Economics, Industrial Relations Section..
    5. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    6. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    7. Schwieterman, Joseph & Smith, C. Scott, 2018. "Sharing the ride: A paired-trip analysis of UberPool and Chicago Transit Authority services in Chicago, Illinois," Research in Transportation Economics, Elsevier, vol. 71(C), pages 9-16.
    8. Cody Cook & Rebecca Diamond & Jonathan V Hall & John A List & Paul Oyer, 2021. "The Gender Earnings Gap in the Gig Economy: Evidence from over a Million Rideshare Drivers [Measuring the Gig Economy: Current Knowledge and Open Issues]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(5), pages 2210-2238.
    9. Hall, Jonathan D. & Palsson, Craig & Price, Joseph, 2018. "Is Uber a substitute or complement for public transit?," Journal of Urban Economics, Elsevier, vol. 108(C), pages 36-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abouelela, Mohamed & Durán-Rodas, David & Antoniou, Constantinos, 2024. "Do we all need shared E-scooters? An accessibility-centered spatial equity evaluation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    2. Di, Yining & Xu, Meng & Zhu, Zheng & Yang, Hai & Chen, Xiqun, 2022. "Analysis of ride-sourcing drivers' working Pattern(s) via spatiotemporal work slices: A case study in Hangzhou," Transport Policy, Elsevier, vol. 125(C), pages 336-351.
    3. Keith, David R. & Naumov, Sergey & Rakoff, Hannah E. & Sanches, Lars Meyer & Singh, Anuraag, 2024. "The effect of increasing vehicle utilization on the automotive industry," European Journal of Operational Research, Elsevier, vol. 317(3), pages 776-792.
    4. Wells, Peter & Wang, Xiaobei & Wang, Liqiao & Liu, Haokun & Orsato, Renato, 2020. "More friends than foes? The impact of automobility-as-a-service on the incumbent automotive industry," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    5. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    6. Morris, Eric A. & Zhou, Ying & Brown, Anne E. & Khan, Sakib M. & Derochers, John L. & Campbell, Harry & Pratt, Angela N. & Chowdhury, Mashrur, 2020. "Are drivers cool with pool? Driver attitudes towards the shared TNC services UberPool and Lyft Shared," Transport Policy, Elsevier, vol. 94(C), pages 123-138.
    7. Ji, Yuxiong & Zhou, Minhang & Zheng, Yujing & Shen, Yu & Du, Yuchuan, 2024. "Urban passenger-and-package sharing transportation by e-hailing taxis: A simulation-based pricing analysis in shanghai," Transport Policy, Elsevier, vol. 156(C), pages 138-151.
    8. Goodall, Noah, 2020. "Non-technological challenges for the remote operation of automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 14-26.
    9. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2022. "Widespread range suitability and cost competitiveness of electric vehicles for ride-hailing drivers," Applied Energy, Elsevier, vol. 319(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    2. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    3. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    4. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    5. Agrawal, David R. & Zhao, Weihua, 2023. "Taxing Uber," Journal of Public Economics, Elsevier, vol. 221(C).
    6. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
    7. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    8. Lee, Yongsung & Lee, Bumsoo, 2022. "What’s eating public transit in the United States? Reasons for declining transit ridership in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 126-143.
    9. Young, Mischa & Allen, Jeff & Farber, Steven, 2019. "Measuring when Uber behaves as a substitute or complement to transit: An examination of travel-time differences in Toronto," OSF Preprints hvbma, Center for Open Science.
    10. Young, Mischa & Allen, Jeff & Farber, Steven, 2020. "Measuring when Uber behaves as a substitute or supplement to transit: An examination of travel-time differences in Toronto," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Ghazaleh Azimi & Alireza Rahimi & Xia Jin, 2022. "Exploring the attitudes of Millennials and Generation Xers toward ridesourcing services," Transportation, Springer, vol. 49(6), pages 1765-1799, December.
    12. Nair, Gopindra S. & Bhat, Chandra R. & Batur, Irfan & Pendyala, Ram M. & Lam, William H.K., 2020. "A model of deadheading trips and pick-up locations for ride-hailing service vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 289-308.
    13. Yang Pan & LiangFei Qiu, 2018. "Is Uber Helping or Hurting Mass Transit? An Empirical Investigation," Working Papers 18-11, NET Institute.
    14. Nur Oktaviani Widiastuti & Muhammad Zudhy Irawan, 2024. "Ride-Hailing Preferences for First- and Last-Mile Connectivity at Intercity Transit Hubs," Sustainability, MDPI, vol. 16(7), pages 1-20, April.
    15. Brown, Anne, 2021. "Not All Fees are Created Equal: Equity Implications of Ride-hail Fee Structures," OSF Preprints cpsqu, Center for Open Science.
    16. John M. Barrios & Yael Hochberg & Hanyi Yi, 2020. "The Cost of Convenience: Ridehailing and Traffic Fatalities," NBER Working Papers 26783, National Bureau of Economic Research, Inc.
    17. Zou, Zhenpeng & Cirillo, Cinzia, 2021. "Does ridesourcing impact driving decisions: A survey weighted regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 1-12.
    18. Yang Pan & Liangfei Qiu, 2022. "How Ride‐Sharing Is Shaping Public Transit System: A Counterfactual Estimator Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 906-927, March.
    19. Berger, Thor & Chen, Chinchih & Frey, Carl Benedikt, 2018. "Drivers of disruption? Estimating the Uber effect," European Economic Review, Elsevier, vol. 110(C), pages 197-210.
    20. David P. Baron, 2018. "Disruptive Entrepreneurship and Dual Purpose Strategies: The Case of Uber," Strategy Science, INFORMS, vol. 3(2), pages 439-462, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:130:y:2019:i:c:p:440-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.