IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v142y2020icp213-231.html
   My bibliography  Save this article

On ride-pooling and traffic congestion

Author

Listed:
  • Ke, Jintao
  • Yang, Hai
  • Zheng, Zhengfei

Abstract

Ridesourcing platforms, such as Uber, Lyft and Didi, are now launching commercial on-demand ride-pooling programs that enable their affiliated drivers to serve two or more passengers in one ride. It is generally expected that successful designs of ride-pooling programs can reduce the required vehicle fleet size, and achieve various societally beneficial objectives, such as alleviating traffic congestion. The reduction in traffic congestion can in turn save travel time for both ridesourcing passengers and normal private car users. However, it is still unclear to what extent the implementation of ride-pooling affects traffic congestion and riders’ travel time. To this end, this paper establishes a model to describe the ridesourcing markets with congestion effects, which are explicitly characterized by a macroscopic fundamental diagram. We compare the time cost (sum of travel time and waiting time) of ridesourcing passengers and normal private car users (background traffic) in the ridesourcing markets without ride-pooling (each vehicle serves one passenger) and with ride-pooling (each vehicle serves one or more passengers). It is found that, a win-win situation can be achieved under some scenarios such that the implementation of on-demand ride-pooling reduces the time cost for both ridesourcing passengers and private car users. Furthermore, we find that the matching window is a key decision variable the platform leverages to affect the stationary equilibrium state. As the matching window increases, passengers are expected to wait for longer time, but the pool-matching probability (the proportion of passengers who are pool-matched) increases, which further alleviates traffic congestion and in turn reduces passengers’ travel time. It is interesting to find that, there is a globally optimal matching window for achieving the minimum time cost for ridesourcing passengers in the normal flow regime.

Suggested Citation

  • Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
  • Handle: RePEc:eee:transb:v:142:y:2020:i:c:p:213-231
    DOI: 10.1016/j.trb.2020.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520304094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Alan & Savelsbergh, Martin, 2015. "Dynamic ridesharing: Is there a role for dedicated drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 483-497.
    2. Gérard P. Cachon & Kaitlin M. Daniels & Ruben Lobel, 2017. "The Role of Surge Pricing on a Service Platform with Self-Scheduling Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 368-384, July.
    3. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    4. Ke, Jintao & Cen, Xuekai & Yang, Hai & Chen, Xiqun & Ye, Jieping, 2019. "Modelling drivers’ working and recharging schedules in a ride-sourcing market with electric vehicles and gasoline vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 160-180.
    5. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Xu, Huayu & Pang, Jong-Shi & Ordóñez, Fernando & Dessouky, Maged, 2015. "Complementarity models for traffic equilibrium with ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 161-182.
    7. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    8. Xiaolei Wang & Hai Yang & Daoli Zhu, 2018. "Driver-Rider Cost-Sharing Strategies and Equilibria in a Ridesharing Program," Transportation Science, INFORMS, vol. 52(4), pages 868-881, August.
    9. Yang, Hai & Yang, Teng, 2011. "Equilibrium properties of taxi markets with search frictions," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 696-713, May.
    10. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    11. Zha, Liteng & Yin, Yafeng & Du, Yuchuan, 2018. "Surge pricing and labor supply in the ride-sourcing market," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 708-722.
    12. Di, Xuan & Ma, Rui & Liu, Henry X. & Ban, Xuegang (Jeff), 2018. "A link-node reformulation of ridesharing user equilibrium with network design," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 230-255.
    13. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    14. Sun, Hao & Wang, Hai & Wan, Zhixi, 2019. "Model and analysis of labor supply for ride-sharing platforms in the presence of sample self-selection and endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 76-93.
    15. Hosni, Hadi & Naoum-Sawaya, Joe & Artail, Hassan, 2014. "The shared-taxi problem: Formulation and solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 303-318.
    16. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    17. Terry A. Taylor, 2018. "On-Demand Service Platforms," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 704-720, October.
    18. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    19. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    20. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    21. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    22. Qian, Xinwu & Zhang, Wenbo & Ukkusuri, Satish V. & Yang, Chao, 2017. "Optimal assignment and incentive design in the taxi group ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 208-226.
    23. Yang, Hai & Ye, Min & Tang, Wilson H. & Wong, S.C., 2005. "Regulating taxi services in the presence of congestion externality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 17-40, January.
    24. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    25. Hai-Jun Huang & Hai Yang & Michael G.H. Bell, 2000. "The models and economics of carpools," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 34(1), pages 55-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xin & Zhong, Shiquan & Ling, Shuai & Jia, Ning & Qi, Hang & He, Zhengbing, 2022. "How to promote the transition from solo driving to mobility services delivery? An empirical study focusing on ridesharing," Transport Policy, Elsevier, vol. 129(C), pages 176-187.
    2. Zwick, Felix & Axhausen, Kay W., 2022. "Ride-pooling demand prediction: A spatiotemporal assessment in Germany," Journal of Transport Geography, Elsevier, vol. 100(C).
    3. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    4. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Häberle, Philip Christoph, 2023. "Discussion of automotive trends and implications for German OEMs," Junior Management Science (JUMS), Junior Management Science e. V., vol. 8(4), pages 955-992.
    6. Wang, Dujuan & Wang, Qi & Yin, Yunqiang & Cheng, T.C.E., 2023. "Optimization of ride-sharing with passenger transfer via deep reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    7. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    8. Zhang, Xin & Zhong, Shiquan & Jia, Ning & Ling, Shuai & Yao, Wang & Ma, Shoufeng, 2024. "A barrier to the promotion of app-based ridesplitting: Travelers’ ambiguity aversion in mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    9. Ke, Jintao & Wang, Ce & Li, Xinwei & Tian, Qiong & Huang, Hai-Jun, 2024. "Equilibrium analysis for on-demand food delivery markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    10. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    11. Zhu, Zheng & Xu, Ailing & He, Qiao-Chu & Yang, Hai, 2021. "Competition between the transportation network company and the government with subsidies to public transit riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    13. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    14. Fayed, Lynn & Nilsson, Gustav & Geroliminis, Nikolas, 2023. "On the utilization of dedicated bus lanes for pooled ride-hailing services," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 29-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    2. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    3. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Ke, Jintao & Li, Xinwei & Yang, Hai & Yin, Yafeng, 2021. "Pareto-efficient solutions and regulations of congested ride-sourcing markets with heterogeneous demand and supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    5. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    6. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    7. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    8. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    9. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    10. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    11. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    12. Sun, S. & Szeto, W.Y., 2021. "Multi-class stochastic user equilibrium assignment model with ridesharing: Formulation and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 203-227.
    13. Stumpe, Miriam & Dieter, Peter & Schryen, Guido & Müller, Oliver & Beverungen, Daniel, 2024. "Designing taxi ridesharing systems with shared pick-up and drop-off locations: Insights from a computational study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    14. Zhang, Kenan & Nie, Yu (Marco), 2021. "To pool or not to pool: Equilibrium, pricing and regulation," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 59-90.
    15. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    17. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    18. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    19. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    20. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:142:y:2020:i:c:p:213-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.