IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.07544.html
   My bibliography  Save this paper

Driver Surge Pricing

Author

Listed:
  • Nikhil Garg
  • Hamid Nazerzadeh

Abstract

Ride-hailing marketplaces like Uber and Lyft use dynamic pricing, often called surge, to balance the supply of available drivers with the demand for rides. We study driver-side payment mechanisms for such marketplaces, presenting the theoretical foundation that has informed the design of Uber's new additive driver surge mechanism. We present a dynamic stochastic model to capture the impact of surge pricing on driver earnings and their strategies to maximize such earnings. In this setting, some time periods (surge) are more valuable than others (non-surge), and so trips of different time lengths vary in the induced driver opportunity cost. First, we show that multiplicative surge, historically the standard on ride-hailing platforms, is not incentive compatible in a dynamic setting. We then propose a structured, incentive-compatible pricing mechanism. This closed-form mechanism has a simple form and is well-approximated by Uber's new additive surge mechanism. Finally, through both numerical analysis and real data from a ride-hailing marketplace, we show that additive surge is more incentive compatible in practice than is multiplicative surge.

Suggested Citation

  • Nikhil Garg & Hamid Nazerzadeh, 2019. "Driver Surge Pricing," Papers 1905.07544, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:1905.07544
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.07544
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Yi Ong & Daniel Freund & Davide Crapis, 2021. "Driver Positioning and Incentive Budgeting with an Escrow Mechanism for Ridesharing Platforms," Papers 2104.14740, arXiv.org.
    2. Lei, Zengxiang & Ukkusuri, Satish V., 2023. "Scalable reinforcement learning approaches for dynamic pricing in ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    3. Chenglong Zhang & Jianqing Chen & Srinivasan Raghunathan, 2022. "Two-Sided Platform Competition in a Sharing Economy," Management Science, INFORMS, vol. 68(12), pages 8909-8932, December.
    4. Hao Yi Ong & Daniel Freund & Davide Crapis, 2021. "Driver Positioning and Incentive Budgeting with an Escrow Mechanism for Ride-Sharing Platforms," Interfaces, INFORMS, vol. 51(5), pages 373-390, September.
    5. Sergey Naumov & David Keith, 2023. "Optimizing the economic and environmental benefits of rideā€hailing and pooling," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 904-929, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.07544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.