IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.20978.html
   My bibliography  Save this paper

Using quantile time series and historical simulation to forecast financial risk multiple steps ahead

Author

Listed:
  • Richard Gerlach
  • Antonio Naimoli
  • Giuseppe Storti

Abstract

A method for quantile-based, semi-parametric historical simulation estimation of multiple step ahead Value-at-Risk (VaR) and Expected Shortfall (ES) models is developed. It uses the quantile loss function, analogous to how the quasi-likelihood is employed by standard historical simulation methods. The returns data are scaled by the estimated quantile series, then resampling is employed to estimate the forecast distribution one and multiple steps ahead, allowing tail risk forecasting. The proposed method is applicable to any data or model where the relationship between VaR and ES does not change over time and can be extended to allow a measurement equation incorporating realized measures, thus including Realized GARCH and Realized CAViaR type models. Its finite sample properties, and its comparison with existing historical simulation methods, are evaluated via a simulation study. A forecasting study assesses the relative accuracy of the 1% and 2.5% VaR and ES one-day-ahead and ten-day-ahead forecasting results for the proposed class of models compared to several competitors.

Suggested Citation

  • Richard Gerlach & Antonio Naimoli & Giuseppe Storti, 2025. "Using quantile time series and historical simulation to forecast financial risk multiple steps ahead," Papers 2502.20978, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.20978
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.20978
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.20978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.