IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v32y2016i03p740-791_00.html
   My bibliography  Save this article

Detecting For Smooth Structural Changes In Garch Models

Author

Listed:
  • Chen, Bin
  • Hong, Yongmiao

Abstract

Detecting and modeling structural changes in GARCH processes have attracted increasing attention in time series econometrics. In this paper, we propose a new approach to testing structural changes in GARCH models. The idea is to compare the log likelihood of a time-varying parameter GARCH model with that of a constant parameter GARCH model, where the time-varying GARCH parameters are estimated by a local quasi-maximum likelihood estimator (QMLE) and the constant GARCH parameters are estimated by a standard QMLE. The test does not require any prior information about the alternatives of structural changes. It has an asymptotic N(0,1) distribution under the null hypothesis of parameter constancy and is consistent against a vast class of smooth structural changes as well as abrupt structural breaks with possibly unknown break points. A consistent parametric bootstrap is employed to provide a reliable inference in finite samples and a simulation study highlights the merits of our test.

Suggested Citation

  • Chen, Bin & Hong, Yongmiao, 2016. "Detecting For Smooth Structural Changes In Garch Models," Econometric Theory, Cambridge University Press, vol. 32(3), pages 740-791, June.
  • Handle: RePEc:cup:etheor:v:32:y:2016:i:03:p:740-791_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000942/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Stefan Richter & Weining Wang & Wei Biao Wu, 2023. "Testing for parameter change epochs in GARCH time series," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 467-491.
    3. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    4. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2024. "A new GARCH model with a deterministic time-varying intercept," Papers 2410.03239, arXiv.org, revised Oct 2024.
    5. Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.
    6. Zongwu Cai & Xiyuan Liu, 2021. "Solving the Price Puzzle Via A Functional Coefficient Factor-Augmented VAR Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202106, University of Kansas, Department of Economics, revised Jan 2021.
    7. Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.
    8. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    9. Dennis Kristensen & Young Jun Lee, 2019. "Local Polynomial Estimation of Time-Varying Parameters in Nonlinear Models," Papers 1904.05209, arXiv.org, revised Aug 2023.
    10. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2021. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 224(2), pages 306-329.
    11. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
    12. Leong, Soon Heng & Urga, Giovanni, 2023. "A practical multivariate approach to testing volatility spillover," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    13. Armin Pourkhanali & Jonathan Keith & Xibin Zhang, 2021. "Conditional Heteroscedasticity Models with Time-Varying Parameters: Estimation and Asymptotics," Monash Econometrics and Business Statistics Working Papers 15/21, Monash University, Department of Econometrics and Business Statistics.
    14. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:32:y:2016:i:03:p:740-791_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.