IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-77247-9_24.html
   My bibliography  Save this book chapter

Algorithms for Network Interdiction and Fortification Games

In: Pareto Optimality, Game Theory And Equilibria

Author

Listed:
  • J. Cole Smith

    (University of Florida)

  • Churlzu Lim

    (University of North Carolina at Charlotte)

Abstract

This chapter explores models and algorithms applied to a class of Stackelberg games on networks. In these network interdictiongames, a network exists over which an operator wishes to execute some function, such as finding a shortest path, shipping a maximum flow, or transmitting a minimum cost multicommodity flow. The role of the interdictor is to compromise certain network elements before the operator acts, by (for instance) increasing the cost of flow or reducing capacity on an arc. We begin by reviewing the field of network interdiction and its related theoretical and mathematical foundations. We then discuss recent applications of stochastic models, valid inequalities, continuous bilinear programming techniques, and asymmetric analysis to network interdiction problems. Next, note that interdiction problems can be extended to a three-stage problem in which the operator fortifies the network (by increasing capacities, reducing flow costs, or defending network elements from the interdictor) before the interdictor takes action. We devote one section to ongoing research in this area and conclude by discussing areas for future research.

Suggested Citation

  • J. Cole Smith & Churlzu Lim, 2008. "Algorithms for Network Interdiction and Fortification Games," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Athanasios Migdalas & Leonidas Pitsoulis (ed.), Pareto Optimality, Game Theory And Equilibria, pages 609-644, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-77247-9_24
    DOI: 10.1007/978-0-387-77247-9_24
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huff, Johnathon D. & Leonard, William B. & Medal, Hugh R., 2022. "The wireless network jamming problem subject to protocol interference using directional antennas and with battery capacity constraints," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    2. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    3. Brian Lunday & Hanif Sherali, 2012. "Network interdiction to minimize the maximum probability of evasion with synergy between applied resources," Annals of Operations Research, Springer, vol. 196(1), pages 411-442, July.
    4. Ketkov, Sergey S. & Prokopyev, Oleg A., 2020. "On greedy and strategic evaders in sequential interdiction settings with incomplete information," Omega, Elsevier, vol. 92(C).
    5. Mike Prince & J. Cole Smith & Joseph Geunes, 2013. "A three‐stage procurement optimization problem under uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(5), pages 395-412, August.
    6. McCarter, Matthew & Barker, Kash & Johansson, Jonas & Ramirez-Marquez, Jose E., 2018. "A bi-objective formulation for robust defense strategies in multi-commodity networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 154-161.
    7. Khouzani, MHR. & Liu, Zhengliang & Malacaria, Pasquale, 2019. "Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 894-903.
    8. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    9. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.
    10. Casorrán, Carlos & Fortz, Bernard & Labbé, Martine & Ordóñez, Fernando, 2019. "A study of general and security Stackelberg game formulations," European Journal of Operational Research, Elsevier, vol. 278(3), pages 855-868.
    11. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    12. Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2019. "Sequential Interdiction with Incomplete Information and Learning," Operations Research, INFORMS, vol. 67(1), pages 72-89, January.
    13. Sreekumaran, Harikrishnan & Hota, Ashish R. & Liu, Andrew L. & Uhan, Nelson A. & Sundaram, Shreyas, 2021. "Equilibrium strategies for multiple interdictors on a common network," European Journal of Operational Research, Elsevier, vol. 288(2), pages 523-538.
    14. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    15. Burcu B. Keskin & Gregory J. Bott & Nickolas K. Freeman, 2021. "Cracking Sex Trafficking: Data Analysis, Pattern Recognition, and Path Prediction," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1110-1135, April.
    16. Hannah Lobban & Yasser Almoghathawi & Nazanin Tajik & Kash Barker, 2021. "Community vulnerability perspective on robust protection planning in interdependent infrastructure networks," Journal of Risk and Reliability, , vol. 235(5), pages 798-813, October.
    17. Mehdi Hemmati & J. Cole Smith & My Thai, 2014. "A cutting-plane algorithm for solving a weighted influence interdiction problem," Computational Optimization and Applications, Springer, vol. 57(1), pages 71-104, January.
    18. Leonardo Lozano & J. Cole Smith, 2017. "A Backward Sampling Framework for Interdiction Problems with Fortification," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 123-139, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-77247-9_24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.