IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v17y1971i9p612-634.html
   My bibliography  Save this article

The Linear Complementarity Problem

Author

Listed:
  • B. Curtis Eaves

    (University of California, Berkeley)

Abstract

This study centers on the task of efficiently finding a solution of the linear complementarity problem: Ix - My = q, x \ge 0, y \ge 0, x \perp y. The main results are: (1) It is shown that Lemke's algorithm will solve (or show no solution exists) the problem for M \in L where L is a class of matrices, which properly includes (i) certain copositive matrices, (ii) certain matrices with nonnegative principal minors, (iii) matrices for bimatrix games. (2) If M \in L, if the system Ix - My = q, x \ge 0, y \ge 0 is feasible and nondegenerate, then the corresponding linear complementarity problem has an odd number of solutions. If M \in L and q > 0 then the solution is unique. (3) If for some M and every q \ge 0 the problem has a unique solution then M \in L and the problem has a solution for every q. (4) If M has nonnegative principal minors and if the linear complementarity with M and q has a nondegenerate complementary solution then the solution is unique. (5) If y T My + y T q is bounded below on y \ge 0 then the linear complementarity problem with M and q has a solution and Lemke's algorithm can be used to find such a solution. If, in addition, the problem is nondegenerate, then it has an odd number of solutions. (6) A procedure based on Lemke's algorithm is developed which either computes stationary points for general quadratic programs or else shows that the program has no optimum. (7) If a quadratic program has an optimum and satisfies a nondegeneracy condition then there are an odd number of stationary points.

Suggested Citation

  • B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
  • Handle: RePEc:inm:ormnsc:v:17:y:1971:i:9:p:612-634
    DOI: 10.1287/mnsc.17.9.612
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.17.9.612
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.17.9.612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:17:y:1971:i:9:p:612-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.