Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2018.10.051
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
- Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
- Ghaddar, Bissan & Naoum-Sawaya, Joe, 2018. "High dimensional data classification and feature selection using support vector machines," European Journal of Operational Research, Elsevier, vol. 265(3), pages 993-1004.
- Maldonado, Sebastián & Pérez, Juan & Bravo, Cristián, 2017. "Cost-based feature selection for Support Vector Machines: An application in credit scoring," European Journal of Operational Research, Elsevier, vol. 261(2), pages 656-665.
- M. Freimer & P. L. Yu, 1976. "Some New Results on Compromise Solutions for Group Decision Problems," Management Science, INFORMS, vol. 22(6), pages 688-693, February.
- Bertolazzi, P. & Felici, G. & Festa, P. & Fiscon, G. & Weitschek, E., 2016. "Integer programming models for feature selection: New extensions and a randomized solution algorithm," European Journal of Operational Research, Elsevier, vol. 250(2), pages 389-399.
- Du, Wen Sheng & Hu, Bao Qing, 2018. "A fast heuristic attribute reduction approach to ordered decision systems," European Journal of Operational Research, Elsevier, vol. 264(2), pages 440-452.
- Wen-meng Tian & Zhen He & Wei Yan, 2013. "Key Process Variable Identification for Quality Classification Based on PLSR Model and Wrapper Feature Selection," Springer Books, in: Runliang Dou (ed.), Proceedings of 2012 3rd International Asia Conference on Industrial Engineering and Management Innovation (IEMI2012), edition 127, chapter 0, pages 263-270, Springer.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiménez-Cordero, Asunción & Morales, Juan Miguel & Pineda, Salvador, 2021. "A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification," European Journal of Operational Research, Elsevier, vol. 293(1), pages 24-35.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yishi & Zhu, Ruilin & Chen, Zhijun & Gao, Jie & Xia, De, 2021. "Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data," European Journal of Operational Research, Elsevier, vol. 290(1), pages 235-247.
- Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
- Jiménez-Cordero, Asunción & Morales, Juan Miguel & Pineda, Salvador, 2021. "A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification," European Journal of Operational Research, Elsevier, vol. 293(1), pages 24-35.
- Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012.
"Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization,"
Applied Energy, Elsevier, vol. 92(C), pages 552-562.
- Shiwei Yu & Yi-Ming Wei & Jing-Li Fan & Xian Zhang & Ke Wang, 2011. "Exploring the regional characteristics of inter-provincial CO2 emissions in China:An improved fuzzy clustering analysis based on particle swarm optimization," CEEP-BIT Working Papers 22, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Moraes, Marcelo Botelho da Costa & Nagano, Marcelo Seido, 2014. "Evolutionary models in cash management policies with multiple assets," Economic Modelling, Elsevier, vol. 39(C), pages 1-7.
- Hsu, C.-H. & Wang, Fu-Kwun & Tzeng, Gwo-Hshiung, 2012. "The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 95-111.
- Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
- Bas Dietzenbacher & Hans Peters, 2022.
"Characterizing NTU-bankruptcy rules using bargaining axioms,"
Annals of Operations Research, Springer, vol. 318(2), pages 871-888, November.
- Dietzenbacher, Bas & Peters, Hans, 2018. "Characterizing NTU-bankruptcy rules using bargaining axioms," Research Memorandum 006, Maastricht University, Graduate School of Business and Economics (GSBE).
- Dietzenbacher, Bas & Peters, Hans, 2018. "Characterizing NTU-Bankruptcy Rules using Bargaining Axioms," Other publications TiSEM 19230a8e-2d4d-4d10-b795-9, Tilburg University, School of Economics and Management.
- Dietzenbacher, Bas & Peters, Hans, 2018. "Characterizing NTU-Bankruptcy Rules using Bargaining Axioms," Discussion Paper 2018-005, Tilburg University, Center for Economic Research.
- Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
- Claus-Jochen Haake & Cheng-Zhong Qin, 2018. "On unification of solutions to the bargaining problem," Working Papers CIE 113, Paderborn University, CIE Center for International Economics.
- Stokes, Jeffrey R. & Tozer, Peter R., 2002. "Sire selection with multiple objectives," Agricultural Systems, Elsevier, vol. 73(2), pages 147-164, August.
- Sandra Benítez-Peña & Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo, 2019. "On support vector machines under a multiple-cost scenario," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 663-682, September.
- Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
- Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2023. "Sparse optimization via vector k-norm and DC programming with an application to feature selection for support vector machines," Computational Optimization and Applications, Springer, vol. 86(2), pages 745-766, November.
- Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
- Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
- Jingjing Long & Cuiqing Jiang & Stanko Dimitrov & Zhao Wang, 2022. "Clues from networks: quantifying relational risk for credit risk evaluation of SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-41, December.
- Basna Mohammed Salih Hasan & Nawzat Sadiq Ahmed, 2021. "Feature selection technique applied in Medical application by Supervised algorithm: A Review," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 190-203.
- Jiaming Liu & Jiajia Liu & Chong Wu & Shouyang Wang, 2024. "Enhancing credit risk prediction based on ensemble tree‐based feature transformation and logistic regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 429-455, March.
More about this item
Keywords
Quality management; Direct multi-search (DMS); Feature selection; imbalanced data; Multi-objective optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:978-989. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.