IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i1p235-247.html
   My bibliography  Save this article

Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data

Author

Listed:
  • Zhang, Yishi
  • Zhu, Ruilin
  • Chen, Zhijun
  • Gao, Jie
  • Xia, De

Abstract

Feature selection is an important preprocessing and interpretable method in the fields where big data plays an essential role. In this paper, we first reformulate and analyze some representative information theoretic feature selection methods from the perspective of approximations of feature inner correlations, and indicate that many of these methods cannot guarantee any theoretical bounds of feature inner correlations. We thus introduce two lower bounds that have very simple forms for feature redundancy and complementarity, and verify that they are closer to the optima than the existing lower bounds applied by some state-of-the-art information theoretic methods. A simple and effective feature selection method based on the proposed lower bounds is then proposed and empirically verified with a wide scope of real-world datasets. The experimental results show that the proposed method achieves promising improvement on feature selection, indicating the effectiveness of the feature criterion consisting of the proposed lower bounds of redundancy and complementarity.

Suggested Citation

  • Zhang, Yishi & Zhu, Ruilin & Chen, Zhijun & Gao, Jie & Xia, De, 2021. "Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data," European Journal of Operational Research, Elsevier, vol. 290(1), pages 235-247.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:235-247
    DOI: 10.1016/j.ejor.2020.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720308328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaddar, Bissan & Naoum-Sawaya, Joe, 2018. "High dimensional data classification and feature selection using support vector machines," European Journal of Operational Research, Elsevier, vol. 265(3), pages 993-1004.
    2. Maldonado, Sebastián & Pérez, Juan & Bravo, Cristián, 2017. "Cost-based feature selection for Support Vector Machines: An application in credit scoring," European Journal of Operational Research, Elsevier, vol. 261(2), pages 656-665.
    3. Daehan Won & Hasan Manzour & Wanpracha Chaovalitwongse, 2020. "Convex Optimization for Group Feature Selection in Networked Data," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 182-198, January.
    4. Aytug, Haldun, 2015. "Feature selection for support vector machines using Generalized Benders Decomposition," European Journal of Operational Research, Elsevier, vol. 244(1), pages 210-218.
    5. Bertolazzi, P. & Felici, G. & Festa, P. & Fiscon, G. & Weitschek, E., 2016. "Integer programming models for feature selection: New extensions and a randomized solution algorithm," European Journal of Operational Research, Elsevier, vol. 250(2), pages 389-399.
    6. Maldonado, Sebastián & Montoya, Ricardo & Weber, Richard, 2015. "Advanced conjoint analysis using feature selection via support vector machines," European Journal of Operational Research, Elsevier, vol. 241(2), pages 564-574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaseb, Z. & Montazeri, H., 2022. "Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels," Energy, Elsevier, vol. 258(C).
    2. Li, Baode & Lu, Jing & Li, Jing & Zhu, Xuebin & Huang, Chuan & Su, Wan, 2022. "Scenario evolutionary analysis for maritime emergencies using an ensemble belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He Jiang, 2023. "Robust forecasting in spatial autoregressive model with total variation regularization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 195-211, March.
    2. Li, An-Da & He, Zhen & Wang, Qing & Zhang, Yang, 2019. "Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method," European Journal of Operational Research, Elsevier, vol. 274(3), pages 978-989.
    3. Ghaddar, Bissan & Naoum-Sawaya, Joe, 2018. "High dimensional data classification and feature selection using support vector machines," European Journal of Operational Research, Elsevier, vol. 265(3), pages 993-1004.
    4. Oztekin, Asil & Al-Ebbini, Lina & Sevkli, Zulal & Delen, Dursun, 2018. "A decision analytic approach to predicting quality of life for lung transplant recipients: A hybrid genetic algorithms-based methodology," European Journal of Operational Research, Elsevier, vol. 266(2), pages 639-651.
    5. Jiang, He & Luo, Shihua & Dong, Yao, 2021. "Simultaneous feature selection and clustering based on square root optimization," European Journal of Operational Research, Elsevier, vol. 289(1), pages 214-231.
    6. Díaz, Verónica & Montoya, Ricardo & Maldonado, Sebastián, 2023. "Preference estimation under bounded rationality: Identification of attribute non-attendance in stated-choice data using a support vector machines approach," European Journal of Operational Research, Elsevier, vol. 304(2), pages 797-812.
    7. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    8. Jiménez-Cordero, Asunción & Morales, Juan Miguel & Pineda, Salvador, 2021. "A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification," European Journal of Operational Research, Elsevier, vol. 293(1), pages 24-35.
    9. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    10. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    11. Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
    12. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    13. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    14. Sandra Benítez-Peña & Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo, 2019. "On support vector machines under a multiple-cost scenario," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 663-682, September.
    15. Karlson Pfannschmidt & Pritha Gupta & Bjorn Haddenhorst & Eyke Hullermeier, 2019. "Learning Context-Dependent Choice Functions," Papers 1901.10860, arXiv.org, revised Oct 2021.
    16. Franke, Melanie & Nadler, Claudia, 2019. "Energy efficiency in the German residential housing market: Its influence on tenants and owners," Energy Policy, Elsevier, vol. 128(C), pages 879-890.
    17. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    18. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2023. "Sparse optimization via vector k-norm and DC programming with an application to feature selection for support vector machines," Computational Optimization and Applications, Springer, vol. 86(2), pages 745-766, November.
    19. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    20. Ozcan, Erhan C. & Görgülü, Berk & Baydogan, Mustafa G., 2024. "Column generation-based prototype learning for optimizing area under the receiver operating characteristic curve," European Journal of Operational Research, Elsevier, vol. 314(1), pages 297-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:235-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.