Integer programming models for feature selection: New extensions and a randomized solution algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2015.09.051
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
- Onur Dagliyan & Fadime Uney-Yuksektepe & I Halil Kavakli & Metin Turkay, 2011. "Optimization Based Tumor Classification from Microarray Gene Expression Data," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-10, February.
- Piramuthu, Selwyn, 2004. "Evaluating feature selection methods for learning in data mining applications," European Journal of Operational Research, Elsevier, vol. 156(2), pages 483-494, July.
- Meiri, Ronen & Zahavi, Jacob, 2006. "Using simulated annealing to optimize the feature selection problem in marketing applications," European Journal of Operational Research, Elsevier, vol. 171(3), pages 842-858, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Yishi & Zhu, Ruilin & Chen, Zhijun & Gao, Jie & Xia, De, 2021. "Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data," European Journal of Operational Research, Elsevier, vol. 290(1), pages 235-247.
- Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2023. "Sparse optimization via vector k-norm and DC programming with an application to feature selection for support vector machines," Computational Optimization and Applications, Springer, vol. 86(2), pages 745-766, November.
- Ghaddar, Bissan & Naoum-Sawaya, Joe, 2018. "High dimensional data classification and feature selection using support vector machines," European Journal of Operational Research, Elsevier, vol. 265(3), pages 993-1004.
- Douek-Pinkovich, Yifat & Ben-Gal, Irad & Raviv, Tal, 2022. "The stochastic test collection problem: Models, exact and heuristic solution approaches," European Journal of Operational Research, Elsevier, vol. 299(3), pages 945-959.
- Giovanni Felici & Kumar Parijat Tripathi & Daniela Evangelista & Mario Rosario Guarracino, 2017. "A mixed integer programming-based global optimization framework for analyzing gene expression data," Journal of Global Optimization, Springer, vol. 69(3), pages 727-744, November.
- Yifat Douek-Pinkovich & Irad Ben-Gal & Tal Raviv, 2021. "The generalized test collection problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 372-386, July.
- Jiménez-Cordero, Asunción & Morales, Juan Miguel & Pineda, Salvador, 2021. "A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification," European Journal of Operational Research, Elsevier, vol. 293(1), pages 24-35.
- Li, An-Da & He, Zhen & Wang, Qing & Zhang, Yang, 2019. "Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method," European Journal of Operational Research, Elsevier, vol. 274(3), pages 978-989.
- Daehan Won & Hasan Manzour & Wanpracha Chaovalitwongse, 2020. "Convex Optimization for Group Feature Selection in Networked Data," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 182-198, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fouskakis, D., 2012. "Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods," European Journal of Operational Research, Elsevier, vol. 220(2), pages 414-422.
- Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
- Wang, Xin & Liu, Xiaodong & Pedrycz, Witold & Zhu, Xiaolei & Hu, Guangfei, 2012. "Mining axiomatic fuzzy set association rules for classification problems," European Journal of Operational Research, Elsevier, vol. 218(1), pages 202-210.
- Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
- Ding‐Wen Tan & William Yeoh & Yee Ling Boo & Soung‐Yue Liew, 2013. "The Impact Of Feature Selection: A Data‐Mining Application In Direct Marketing," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(1), pages 23-38, January.
- Aytug, Haldun, 2015. "Feature selection for support vector machines using Generalized Benders Decomposition," European Journal of Operational Research, Elsevier, vol. 244(1), pages 210-218.
- Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012.
"Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization,"
Applied Energy, Elsevier, vol. 92(C), pages 552-562.
- Shiwei Yu & Yi-Ming Wei & Jing-Li Fan & Xian Zhang & Ke Wang, 2011. "Exploring the regional characteristics of inter-provincial CO2 emissions in China:An improved fuzzy clustering analysis based on particle swarm optimization," CEEP-BIT Working Papers 22, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Moraes, Marcelo Botelho da Costa & Nagano, Marcelo Seido, 2014. "Evolutionary models in cash management policies with multiple assets," Economic Modelling, Elsevier, vol. 39(C), pages 1-7.
- Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
- Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
- Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
- Pacheco, Joaquín & Casado, Silvia & Núñez, Laura, 2009. "A variable selection method based on Tabu search for logistic regression models," European Journal of Operational Research, Elsevier, vol. 199(2), pages 506-511, December.
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Juheng Zhang & Selwyn Piramuthu, 2018. "Product recommendation with latent review topics," Information Systems Frontiers, Springer, vol. 20(3), pages 617-625, June.
- Pendharkar, Parag C. & Troutt, Marvin D., 2011. "DEA based dimensionality reduction for classification problems satisfying strict non-satiety assumption," European Journal of Operational Research, Elsevier, vol. 212(1), pages 155-163, July.
More about this item
Keywords
Data mining; Heuristics; Integer programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:250:y:2016:i:2:p:389-399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.