IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v264y2018i2p440-452.html
   My bibliography  Save this article

A fast heuristic attribute reduction approach to ordered decision systems

Author

Listed:
  • Du, Wen Sheng
  • Hu, Bao Qing

Abstract

Rough set theory has shown success in being a filter-based feature selection approach for analyzing information systems. One of its main aims is to search for a feature subset called a reduct, which preserves the classification ability of the original system. In this paper, we consider ordered decision systems, where the preference order, a fundamental concept in dominance-based rough set approach, plays a critical role. In recent literature, based on the greedy hill climbing method, many heuristic attribute reduction algorithms are proposed by utilizing significance measures of attributes, and they are extended to deal with ordered decision systems. Unfortunately, they are often time-consuming, especially when applied to deal with large scale data sets with high dimensions. To reduce the complexity, a novel accelerator is introduced in heuristic algorithms from the perspectives of objects and criteria. Based on the new accelerator, the number of objects and the dimension of criteria are lessened thus making the accelerated algorithms faster than their original counterparts while maintaining the same reducts. Experimental analysis shows the validity and efficiency of the proposed methods.

Suggested Citation

  • Du, Wen Sheng & Hu, Bao Qing, 2018. "A fast heuristic attribute reduction approach to ordered decision systems," European Journal of Operational Research, Elsevier, vol. 264(2), pages 440-452.
  • Handle: RePEc:eee:ejores:v:264:y:2018:i:2:p:440-452
    DOI: 10.1016/j.ejor.2017.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717302333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salvatore Greco & Benedetto Matarazzo & Roman Słowiński, 2016. "Decision Rule Approach," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 497-552, Springer.
    2. R. Slowinski & C. Zopounidis, 1995. "Application of the Rough Set Approach to Evaluation of Bankruptcy Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(1), pages 27-41, March.
    3. Yao, Yiyu & Zhou, Bing, 2016. "Two Bayesian approaches to rough sets," European Journal of Operational Research, Elsevier, vol. 251(3), pages 904-917.
    4. Du, Wen Sheng & Hu, Bao Qing, 2017. "Dominance-based rough fuzzy set approach and its application to rule induction," European Journal of Operational Research, Elsevier, vol. 261(2), pages 690-703.
    5. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    6. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 1999. "Rough approximation of a preference relation by dominance relations," European Journal of Operational Research, Elsevier, vol. 117(1), pages 63-83, August.
    7. Potharst, R. & Feelders, A.J., 2002. "Classification Trees for Problems with Monotonicity Constraints," ERIM Report Series Research in Management ERS-2002-45-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Dembczynski, Krzysztof & Greco, Salvatore & Slowinski, Roman, 2009. "Rough set approach to multiple criteria classification with imprecise evaluations and assignments," European Journal of Operational Research, Elsevier, vol. 198(2), pages 626-636, October.
    9. Piramuthu, Selwyn, 2004. "Evaluating feature selection methods for learning in data mining applications," European Journal of Operational Research, Elsevier, vol. 156(2), pages 483-494, July.
    10. Fan, Tuan-Fang & Liu, Duen-Ren & Tzeng, Gwo-Hshiung, 2007. "Rough set-based logics for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 182(1), pages 340-355, October.
    11. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2002. "Rough sets methodology for sorting problems in presence of multiple attributes and criteria," European Journal of Operational Research, Elsevier, vol. 138(2), pages 247-259, April.
    12. Chakhar, Salem & Ishizaka, Alessio & Labib, Ashraf & Saad, Inès, 2016. "Dominance-based rough set approach for group decisions," European Journal of Operational Research, Elsevier, vol. 251(1), pages 206-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakhar, Salem & Ishizaka, Alessio & Thorpe, Andy & Cox, Joe & Nguyen, Thang & Ford, Liz, 2020. "Calculating the relative importance of condition attributes based on the characteristics of decision rules and attribute reducts: Application to crowdfunding," European Journal of Operational Research, Elsevier, vol. 286(2), pages 689-712.
    2. Li, An-Da & He, Zhen & Wang, Qing & Zhang, Yang, 2019. "Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method," European Journal of Operational Research, Elsevier, vol. 274(3), pages 978-989.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Wen Sheng & Hu, Bao Qing, 2017. "Dominance-based rough fuzzy set approach and its application to rule induction," European Journal of Operational Research, Elsevier, vol. 261(2), pages 690-703.
    2. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    3. Abbas Mardani & Mehrbakhsh Nilashi & Jurgita Antucheviciene & Madjid Tavana & Romualdas Bausys & Othman Ibrahim, 2017. "Recent Fuzzy Generalisations of Rough Sets Theory: A Systematic Review and Methodological Critique of the Literature," Complexity, Hindawi, vol. 2017, pages 1-33, October.
    4. Huang, Bing & Li, Huaxiong & Feng, Guofu & Zhou, Xianzhong, 2019. "Dominance-based rough sets in multi-scale intuitionistic fuzzy decision tables," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 487-512.
    5. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    6. Azam, Nouman & Zhang, Yan & Yao, JingTao, 2017. "Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets," European Journal of Operational Research, Elsevier, vol. 261(2), pages 704-714.
    7. Fan, Tuan-Fang & Liu, Duen-Ren & Tzeng, Gwo-Hshiung, 2007. "Rough set-based logics for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 182(1), pages 340-355, October.
    8. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    9. Salvatore Greco & Benedetto Matarazzo & Roman Slowinski & Stelios Zanakis, 2011. "Global investing risk: a case study of knowledge assessment via rough sets," Annals of Operations Research, Springer, vol. 185(1), pages 105-138, May.
    10. Dembczynski, Krzysztof & Greco, Salvatore & Slowinski, Roman, 2009. "Rough set approach to multiple criteria classification with imprecise evaluations and assignments," European Journal of Operational Research, Elsevier, vol. 198(2), pages 626-636, October.
    11. Denis Bouyssou & Thierry Marchant & Marc Pirlot, 2023. "A theoretical look at Electre Tri-nB and related sorting models," 4OR, Springer, vol. 21(1), pages 1-31, March.
    12. Blaszczynski, Jerzy & Greco, Salvatore & Slowinski, Roman, 2007. "Multi-criteria classification - A new scheme for application of dominance-based decision rules," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1030-1044, September.
    13. Renaud, J. & Thibault, J. & Lanouette, R. & Kiss, L.N. & Zaras, K. & Fonteix, C., 2007. "Comparison of two multicriteria decision aid methods: Net Flow and Rough Set Methods in a high yield pulping process," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1418-1432, March.
    14. Mota, Caroline Maria de Miranda & Figueiredo, Ciro José Jardim de & Pereira, Débora Viana e Sousa, 2021. "Identifying areas vulnerable to homicide using multiple criteria analysis and spatial analysis," Omega, Elsevier, vol. 100(C).
    15. Sarah Ben Amor & Fateh Belaid & Ramzi Benkraiem & Boumediene Ramdani & Khaled Guesmi, 2023. "Multi-criteria classification, sorting, and clustering: a bibliometric review and research agenda," Annals of Operations Research, Springer, vol. 325(2), pages 771-793, June.
    16. Vetschera, Rudolf & Chen, Ye & Hipel, Keith W. & Marc Kilgour, D., 2010. "Robustness and information levels in case-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 202(3), pages 841-852, May.
    17. Mi, Yunlong & Wang, Zongrun & Liu, Hui & Qu, Yi & Yu, Gaofeng & Shi, Yong, 2023. "Divide and conquer: A granular concept-cognitive computing system for dynamic classification decision making," European Journal of Operational Research, Elsevier, vol. 308(1), pages 255-273.
    18. Fu-Ling Cai & Xiuwu Liao & Kan-Liang Wang, 2012. "An interactive sorting approach based on the assignment examples of multiple decision makers with different priorities," Annals of Operations Research, Springer, vol. 197(1), pages 87-108, August.
    19. Fan, Tuan-Fang & Liau, Churn-Jung & Liu, Duen-Ren, 2011. "A relational perspective of attribute reduction in rough set-based data analysis," European Journal of Operational Research, Elsevier, vol. 213(1), pages 270-278, August.
    20. Oussama Raboun & Eric Chojnacki & Alexis Tsoukiàs, 2023. "Dynamic-R: a “challenge-free” method for rating problem statements," Annals of Operations Research, Springer, vol. 325(2), pages 845-873, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:264:y:2018:i:2:p:440-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.