IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-33012-4_27.html
   My bibliography  Save this book chapter

Key Process Variable Identification for Quality Classification Based on PLSR Model and Wrapper Feature Selection

In: Proceedings of 2012 3rd International Asia Conference on Industrial Engineering and Management Innovation (IEMI2012)

Author

Listed:
  • Wen-meng Tian

    (Tianjin University)

  • Zhen He

    (Tianjin University)

  • Wei Yan

    (Tianjin University)

Abstract

In modern manufacturing, hundreds of process variables are collected, and it is usually difficult to identify the most informative ones. Partial Least Square Regression provides an efficient way to evaluate each variable, but it cannot evaluate any variable subset as a whole. In the paper, a new framework of key process variable identification is proposed. It combines PLSR model and wrapper feature selection to firstly assess every variable individually and then the top variables in groups. Five datasets are tested, and the average classification accuracy is higher and the key process variables identified are less than the available approaches.

Suggested Citation

  • Wen-meng Tian & Zhen He & Wei Yan, 2013. "Key Process Variable Identification for Quality Classification Based on PLSR Model and Wrapper Feature Selection," Springer Books, in: Runliang Dou (ed.), Proceedings of 2012 3rd International Asia Conference on Industrial Engineering and Management Innovation (IEMI2012), edition 127, chapter 0, pages 263-270, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-33012-4_27
    DOI: 10.1007/978-3-642-33012-4_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, An-Da & He, Zhen & Wang, Qing & Zhang, Yang, 2019. "Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method," European Journal of Operational Research, Elsevier, vol. 274(3), pages 978-989.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-33012-4_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.