IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i2p656-665.html
   My bibliography  Save this article

Cost-based feature selection for Support Vector Machines: An application in credit scoring

Author

Listed:
  • Maldonado, Sebastián
  • Pérez, Juan
  • Bravo, Cristián

Abstract

In this work we propose two formulations based on Support Vector Machines for simultaneous classification and feature selection that explicitly incorporate attribute acquisition costs. This is a challenging task for two main reasons: the estimation of the acquisition costs is not straightforward and may depend on multivariate factors, and the inter-dependence between variables must be taken into account for the modelling process since companies usually acquire groups of related variables rather than acquiring them individually. Mixed-integer linear programming models are proposed for constructing classifiers that constrain acquisition costs while classifying adequately. Experimental results using credit scoring datasets demonstrate the effectiveness of our methods in terms of predictive performance at a low cost compared to well-known feature selection approaches.

Suggested Citation

  • Maldonado, Sebastián & Pérez, Juan & Bravo, Cristián, 2017. "Cost-based feature selection for Support Vector Machines: An application in credit scoring," European Journal of Operational Research, Elsevier, vol. 261(2), pages 656-665.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:656-665
    DOI: 10.1016/j.ejor.2017.02.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717301595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.02.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bravo, Cristián & Maldonado, Sebastián & Weber, Richard, 2013. "Granting and managing loans for micro-entrepreneurs: New developments and practical experiences," European Journal of Operational Research, Elsevier, vol. 227(2), pages 358-366.
    2. Verbraken, Thomas & Bravo, Cristián & Weber, Richard & Baesens, Bart, 2014. "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research, Elsevier, vol. 238(2), pages 505-513.
    3. Carrizosa, Emilio & Martín-Barragán, Belén & Morales, Dolores Romero, 2011. "Detecting relevant variables and interactions in supervised classification," European Journal of Operational Research, Elsevier, vol. 213(1), pages 260-269, August.
    4. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    2. Chi Ming Chen & Geoffrey Kwok Fai Tso & Kaijian He, 2024. "Quantum Optimized Cost Based Feature Selection and Credit Scoring for Mobile Micro-financing," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 919-950, February.
    3. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    4. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    5. Zhang, Yishi & Zhu, Ruilin & Chen, Zhijun & Gao, Jie & Xia, De, 2021. "Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data," European Journal of Operational Research, Elsevier, vol. 290(1), pages 235-247.
    6. Revathi Bhuvaneswari & Antonio Segalini, 2020. "Determining Secondary Attributes for Credit Evaluation in P2P Lending," Papers 2006.13921, arXiv.org.
    7. Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
    8. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    9. Liu, Wanan & Fan, Hong & Xia, Meng, 2023. "Tree-based heterogeneous cascade ensemble model for credit scoring," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1593-1614.
    10. Jingjing Long & Cuiqing Jiang & Stanko Dimitrov & Zhao Wang, 2022. "Clues from networks: quantifying relational risk for credit risk evaluation of SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-41, December.
    11. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 2021. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 17(1), pages 29-43, March.
    12. Zhang, Hao & Shi, Yuxin & Yang, Xueran & Zhou, Ruiling, 2021. "A firefly algorithm modified support vector machine for the credit risk assessment of supply chain finance," Research in International Business and Finance, Elsevier, vol. 58(C).
    13. Jiaming Liu & Jiajia Liu & Chong Wu & Shouyang Wang, 2024. "Enhancing credit risk prediction based on ensemble tree‐based feature transformation and logistic regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 429-455, March.
    14. Trivedi, Shrawan Kumar, 2020. "A study on credit scoring modeling with different feature selection and machine learning approaches," Technology in Society, Elsevier, vol. 63(C).
    15. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    16. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    17. Baldomero-Naranjo, Marta & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M., 2020. "Tightening big Ms in integer programming formulations for support vector machines with ramp loss," European Journal of Operational Research, Elsevier, vol. 286(1), pages 84-100.
    18. Li, An-Da & He, Zhen & Wang, Qing & Zhang, Yang, 2019. "Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method," European Journal of Operational Research, Elsevier, vol. 274(3), pages 978-989.
    19. Tsai, Chih-Fong & Sue, Kuen-Liang & Hu, Ya-Han & Chiu, Andy, 2021. "Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction," Journal of Business Research, Elsevier, vol. 130(C), pages 200-209.
    20. Sandra Benítez-Peña & Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo, 2019. "On support vector machines under a multiple-cost scenario," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 663-682, September.
    21. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    22. Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
    23. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 0. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-15.
    24. Victor Chang & Sharuga Sivakulasingam & Hai Wang & Siu Tung Wong & Meghana Ashok Ganatra & Jiabin Luo, 2024. "Credit Risk Prediction Using Machine Learning and Deep Learning: A Study on Credit Card Customers," Risks, MDPI, vol. 12(11), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    2. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    3. Luisa Roa & Alejandro Correa-Bahnsen & Gabriel Suarez & Fernando Cort'es-Tejada & Mar'ia A. Luque & Cristi'an Bravo, 2020. "Super-App Behavioral Patterns in Credit Risk Models: Financial, Statistical and Regulatory Implications," Papers 2005.14658, arXiv.org, revised Jan 2021.
    4. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    5. Shen, Feng & Zhang, Xin & Wang, Run & Lan, Dao & Zhou, Wei, 2022. "Sequential optimization three-way decision model with information gain for credit default risk evaluation," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1116-1128.
    6. Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
    7. Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
    8. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    9. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    10. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    11. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    12. He Jiang, 2022. "A novel robust structural quadratic forecasting model and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1156-1180, September.
    13. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    14. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    15. Tsukahara, Fábio Yasuhiro & Kimura, Herbert & Sobreiro, Vinicius Amorim & Zambrano, Juan Carlos Arismendi, 2016. "Validation of default probability models: A stress testing approach," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 70-85.
    16. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    17. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    18. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    19. Liu, Zhenkun & Zhang, Ying & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Hufang & Gao, Yuyang & Chen, Yinghao, 2024. "Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    20. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:656-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.