IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i2p664-675.html
   My bibliography  Save this article

Improving corporate bond recovery rate prediction using multi-factor support vector regressions

Author

Listed:
  • Nazemi, Abdolreza
  • Heidenreich, Konstantin
  • Fabozzi, Frank J.

Abstract

In the multi-factor framework described in this paper, we use instrument-specific characteristics, several macroeconomic variables, and industry-specific characteristics as our explanatory variables for predicting recovery rates for corporate bonds. By including the principal components derived from a large number of macroeconomic variables, all three least-squares support vector regression methods, as well as the ordinary linear regression, exhibit higher out-of-sample predictive accuracy than the models that included only the few macroeconomic variables suggested in the literature. We compare the prediction accuracies of all techniques by incorporating sparse principal components, nonlinear principal components from an auto-associative neural network, and kernel principal components. Our results show that sparse principal components generate more interpretable and accurate estimations compared to the other principal component techniques. Moreover, we apply gradient boosting to generate a ranking of the 104 macroeconomic variables, from best to worst, based on their prediction power in recovery rate estimation. The three categories with the most informative macroeconomic predictors are micro-level factors, business cycle variables, and stock market indicators.

Suggested Citation

  • Nazemi, Abdolreza & Heidenreich, Konstantin & Fabozzi, Frank J., 2018. "Improving corporate bond recovery rate prediction using multi-factor support vector regressions," European Journal of Operational Research, Elsevier, vol. 271(2), pages 664-675.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:664-675
    DOI: 10.1016/j.ejor.2018.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718304247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    2. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    3. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    4. Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
    5. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
    6. Acharya, Viral V. & Bharath, Sreedhar T. & Srinivasan, Anand, 2007. "Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries," Journal of Financial Economics, Elsevier, vol. 85(3), pages 787-821, September.
    7. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    8. Jankowitsch, Rainer & Nagler, Florian & Subrahmanyam, Marti G., 2014. "The determinants of recovery rates in the US corporate bond market," Journal of Financial Economics, Elsevier, vol. 114(1), pages 155-177.
    9. Ellen Tobback & David Martens & Tony Van Gestel & Bart Baesens, 2014. "Forecasting Loss Given Default models: impact of account characteristics and the macroeconomic state," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 376-392, March.
    10. D Rösch & H Scheule, 2014. "Forecasting probabilities of default and loss rates given default in the presence of selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 393-407, March.
    11. Edward I. Altman & Brooks Brady & Andrea Resti & Andrea Sironi, 2005. "The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2203-2228, November.
    12. Stephan K. Chalup & Andreas Mitschele, 2008. "Kernel Methods in Finance," International Handbooks on Information Systems, in: Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), Handbook on Information Technology in Finance, chapter 27, pages 655-687, Springer.
    13. Altman, Edward I. & Kalotay, Egon A., 2014. "Ultimate recovery mixtures," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 116-129.
    14. Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
    2. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
    3. Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," Risks, MDPI, vol. 10(6), pages 1-29, June.
    4. Fu, Saiji & Tian, Yingjie & Tang, Long, 2023. "Robust regression under the general framework of bounded loss functions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1325-1339.
    5. Barbagli, Matteo & François, Pascal & Gauthier, Geneviève & Vrins, Frédéric, 2024. "The role of CDS spreads in explaining bond recovery rates," LIDAM Discussion Papers LFIN 2024002, Université catholique de Louvain, Louvain Finance (LFIN).
    6. He Jiang, 2023. "Robust forecasting in spatial autoregressive model with total variation regularization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 195-211, March.
    7. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    8. Fazlollah Soleymani & Houman Masnavi & Stanford Shateyi, 2020. "Classifying a Lending Portfolio of Loans with Dynamic Updates via a Machine Learning Technique," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
    9. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    10. Konstantin Gorgen & Abdolreza Nazemi & Melanie Schienle, 2022. "Robust Knockoffs for Controlling False Discoveries With an Application to Bond Recovery Rates," Papers 2206.06026, arXiv.org.
    11. Jochen Güntner & Benjamin Karner, 2023. "The bond agio premium," Economics working papers 2023-13, Department of Economics, Johannes Kepler University Linz, Austria.
    12. Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
    13. Maria Carannante & Valeria D’Amato & Paola Fersini & Salvatore Forte & Giuseppe Melisi, 2024. "Machine learning due diligence evaluation to increase NPLs profitability transactions on secondary market," Review of Managerial Science, Springer, vol. 18(7), pages 1963-1983, July.
    14. Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
    15. Distaso, Walter & Roccazzella, Francesco & Vrins, Frédéric, 2023. "Business cycle and realized losses in the consumer credit industry," LIDAM Discussion Papers LFIN 2023007, Université catholique de Louvain, Louvain Finance (LFIN).
    16. Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
    17. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
    18. Jean‐François Bégin & Mathieu Boudreault & Mathieu Thériault, 2024. "Leveraging prices from credit and equity option markets for portfolio risk management," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(1), pages 122-147, January.
    19. Hui-Ching Chuang & Jau-er Chen, 2023. "Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles," Econometrics, MDPI, vol. 11(1), pages 1-20, February.
    20. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    2. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    3. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    4. Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
    5. Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," Risks, MDPI, vol. 10(6), pages 1-29, June.
    6. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
    7. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    8. Krüger, Steffen & Rösch, Daniel, 2017. "Downturn LGD modeling using quantile regression," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 42-56.
    9. Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
    10. Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
    11. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
    12. Natalia Nehrebecka, 2019. "Bank loans recovery rate in commercial banks: A case study of non-financial corporations," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 139-172.
    13. Barbagli, Matteo & François, Pascal & Gauthier, Geneviève & Vrins, Frédéric, 2024. "The role of CDS spreads in explaining bond recovery rates," LIDAM Discussion Papers LFIN 2024002, Université catholique de Louvain, Louvain Finance (LFIN).
    14. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    15. Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
    16. Krüger, Steffen & Oehme, Toni & Rösch, Daniel & Scheule, Harald, 2018. "A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 246-262.
    17. Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019. "Recovery rates: Uncertainty certainly matters," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 371-383.
    18. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    19. Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
    20. Chen, Xiaowei & Wang, Gang & Zhang, Xiangting, 2019. "Modeling recovery rate for leveraged loans," Economic Modelling, Elsevier, vol. 81(C), pages 231-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:664-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.