IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i5p1275-1290.html
   My bibliography  Save this article

Does herding effect help forecast market volatility?—Evidence from the Chinese stock market

Author

Listed:
  • Yide Wang
  • Chao Yu
  • Xujie Zhao

Abstract

This paper aims to study the predictive power of market herding effect for market volatility. We extend the widely used four types of linear HAR models by incorporating the market herding index and further introduce a nonlinear forecasting mechanism by using two machine learning algorithms—support vector regression (SVR) and random forest (RF). All the methods are applied to the Chinese stock market. We evaluate their in‐sample and out‐of‐sample performances for various prediction step lengths. The results show that according to the RMSE and MAE, for the daily volatility prediction, the extra herding factor makes no significant contribution, and the linear model has no significant difference with the algorithms as well, whereas with the increase of step length, the herding factor shows a significant power in the weekly, monthly, and quarterly prediction, and meanwhile, the RF algorithm outperforms the other methods. However, for the QLIKE, the herding factor always significantly improves the predictions for all kinds of step lengths and methods, and the SVR algorithm with the herding factor is dominant. Overall, the herding factor helps forecast the volatility, and the extent to which the precision is improved takes on an inverted “U” shape with the increase in step length. The two algorithms are superior to the linear model, especially for the longer‐term prediction, and the herding factor can help enlarge this advantage, which implies a nonlinear relationship between the herding and volatility. Besides, the extra liquidity factor plays no significant role in the volatility prediction, but the continuous variation (CV), jump variation (JV), and leverage effect are helpful in most cases.

Suggested Citation

  • Yide Wang & Chao Yu & Xujie Zhao, 2023. "Does herding effect help forecast market volatility?—Evidence from the Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1275-1290, August.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:5:p:1275-1290
    DOI: 10.1002/for.2968
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2968
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang, Eric C. & Cheng, Joseph W. & Khorana, Ajay, 2000. "An examination of herd behavior in equity markets: An international perspective," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1651-1679, October.
    2. Lakonishok, Josef & Shleifer, Andrei & Vishny, Robert W., 1992. "The impact of institutional trading on stock prices," Journal of Financial Economics, Elsevier, vol. 32(1), pages 23-43, August.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    4. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    5. Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2020. "Liquidity, implied volatility and tail risk: A comparison of liquidity measures," International Review of Financial Analysis, Elsevier, vol. 69(C).
    6. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    7. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    8. Houda Litimi, 2017. "Herd behavior in the French stock market," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 16(4), pages 497-515, November.
    9. Jiang Wang, 1993. "A Model of Intertemporal Asset Prices Under Asymmetric Information," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(2), pages 249-282.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. Mohamed Zouaoui & Geneviève Nouyrigat & Francisca Beer, 2011. "How does investor sentiment affect stock market crises?Evidence from panel data," Working Papers CREGO 1110304, Université de Bourgogne - CREGO EA7317 Centre de recherches en gestion des organisations.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Mohamed Zouaoui & Geneviève Nouyrigat & Francisca Beer, 2011. "How Does Investor Sentiment Affect Stock Market Crises? Evidence from Panel Data," The Financial Review, Eastern Finance Association, vol. 46(4), pages 723-747, November.
    14. Scharfstein, David S & Stein, Jeremy C, 1990. "Herd Behavior and Investment," American Economic Review, American Economic Association, vol. 80(3), pages 465-479, June.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    16. Mr. Sunil Sharma & Sushil Bikhchandani, 2000. "Herd Behavior in Financial Markets: A Review," IMF Working Papers 2000/048, International Monetary Fund.
    17. Itzhak Venezia & Amrut Nashikkar & Zur Shapira, 2011. "Firm specific and macro herding by professional and amateur investors and their effects on market volatility," Discussion Paper Series dp586, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    18. Venezia, Itzhak & Nashikkar, Amrut & Shapira, Zur, 2011. "Firm specific and macro herding by professional and amateur investors and their effects on market volatility," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1599-1609, July.
    19. Natividad Blasco & Pilar Corredor & Sandra Ferreruela, 2012. "Does herding affect volatility? Implications for the Spanish stock market," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 311-327, July.
    20. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    21. Mohamed Zouaoui & G. Nouyrigat & F. Beer, 2011. "How Does Investor Sentiment Affect StockMarket Crises? Evidence from Panel Data," Post-Print halshs-00785809, HAL.
    22. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    23. Mehmet Balcilar & Riza Demirer, 2015. "Effect of Global Shocks and Volatility on Herd Behavior in an Emerging Market: Evidence from Borsa Istanbul," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(1), pages 140-159, January.
    24. Houda Litimi, 2017. "Herd behavior in the French stock market," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 16(4), pages 497-515, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei, Tianlun & Liu, Xiaoquan, 2021. "Herding and market volatility," International Review of Financial Analysis, Elsevier, vol. 78(C).
    2. Puput Tri Komalasari & Marwan Asri & Bernardinus M. Purwanto & Bowo Setiyono, 2022. "Herding behaviour in the capital market: What do we know and what is next?," Management Review Quarterly, Springer, vol. 72(3), pages 745-787, September.
    3. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    4. Tihana Škrinjarić, 2018. "Revisiting Herding Investment Behavior on the Zagreb Stock Exchange: A Quantile Regression Approach," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 3(2), pages 119-162, December.
    5. Arjoon, Vaalmikki & Bhatnagar, Chandra Shekhar, 2017. "Dynamic herding analysis in a frontier market," Research in International Business and Finance, Elsevier, vol. 42(C), pages 496-508.
    6. Pop, Raluca Elena, 2012. "Herd behavior towards the market index: evidence from Romanian stock exchange," MPRA Paper 51595, University Library of Munich, Germany.
    7. Choi, Nicole & Skiba, Hilla, 2015. "Institutional herding in international markets," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 246-259.
    8. Wang, Xinru & Kim, Maria H. & Suardi, Sandy, 2022. "Herding and China's market-wide circuit breaker," Journal of Banking & Finance, Elsevier, vol. 141(C).
    9. Wang, Qi & Xiong, Xiong & Yang, Zhuoyi & An, Yahui & Feng, Xu, 2024. "Attention of women's liberation and investor herding behavior," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 520-544.
    10. Litimi, Houda & BenSaïda, Ahmed & Bouraoui, Omar, 2016. "Herding and excessive risk in the American stock market: A sectoral analysis," Research in International Business and Finance, Elsevier, vol. 38(C), pages 6-21.
    11. Arjoon, Vaalmikki & Bhatnagar, Chandra Shekhar & Ramlakhan, Prakash, 2020. "Herding in the Singapore stock Exchange," Journal of Economics and Business, Elsevier, vol. 109(C).
    12. Hui Qu & Ping Ji, 2016. "Modeling Realized Volatility Dynamics with a Genetic Algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 434-444, August.
    13. Zhenxi Chen & Jing Ru, 2021. "Herding and capitalization size in the Chinese stock market: a micro-foundation evidence," Empirical Economics, Springer, vol. 60(4), pages 1895-1911, April.
    14. SENARATHNE W Chamil & JIANGUO Wei, 2018. "Do Investors Mimic Trading Strategies Of Foreign Investors Or The Market: Implications For Capital Asset Pricing," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 13(3), pages 171-205, December.
    15. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    16. Hsieh, Shu-Fan & Chan, Chia-Ying & Wang, Ming-Chun, 2020. "Retail investor attention and herding behavior," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 109-132.
    17. Lin, Anchor Y. & Lin, Yueh-Neng, 2014. "Herding of institutional investors and margin traders on extreme market movements," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 186-198.
    18. Andrikopoulos, Panagiotis & Gebka, Bartosz & Kallinterakis, Vasileios, 2021. "Regulatory mood-congruence and herding: Evidence from cannabis stocks," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 842-864.
    19. Michael McAleer & Kim Radalj, 2013. "Herding, Information Cascades and Volatility Spillovers in Futures Markets," Journal of Reviews on Global Economics, Lifescience Global, vol. 2, pages 307-329.
    20. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:5:p:1275-1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.