IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v162y2011i2p312-325.html
   My bibliography  Save this article

Modeling frailty-correlated defaults using many macroeconomic covariates

Author

Listed:
  • Koopman, Siem Jan
  • Lucas, André
  • Schwaab, Bernd

Abstract

We propose a novel time series panel data framework for estimating and forecasting time-varying corporate default rates subject to observed and unobserved risk factors. In an empirical application for a U.S. dataset, we find a large and significant role for a dynamic frailty component even after controlling for more than 80% of the variation in more than 100 macro-financial covariates and other standard risk factors. We emphasize the need for a latent component to prevent a downward bias in estimated default rate volatility and in estimated probabilities of extreme default losses on portfolios of U.S. debt. The latent factor does not substitute for a single omitted macroeconomic variable. We argue that it captures different omitted effects at different times. We also provide empirical evidence that default and business cycle conditions partly depend on different processes. In an out-of-sample forecasting study for point-in-time default probabilities, we obtain mean absolute error reductions of more than forty percent when compared to models with observed risk factors only. The forecasts are relatively more accurate when default conditions diverge from aggregate macroeconomic conditions.

Suggested Citation

  • Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
  • Handle: RePEc:eee:econom:v:162:y:2011:i:2:p:312-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(11)00030-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    3. Peter Exterkate & Dick Van Dijk & Christiaan Heij & Patrick J. F. Groenen, 2013. "Forecasting the Yield Curve in a Data‐Rich Environment Using the Factor‐Augmented Nelson–Siegel Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 193-214, April.
    4. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    5. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    6. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    7. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    8. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    9. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    10. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    11. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    12. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    13. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    14. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    15. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    16. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    17. Jorion, Philippe & Zhang, Gaiyan, 2007. "Good and bad credit contagion: Evidence from credit default swaps," Journal of Financial Economics, Elsevier, vol. 84(3), pages 860-883, June.
    18. Gropp, Reint & Boissay, Frédéric, 2007. "Trade credit defaults and liquidity provision by firms," Working Paper Series 753, European Central Bank.
    19. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernd Schwaab & Siem Jan Koopman & André Lucas, 2017. "Global Credit Risk: World, Country and Industry Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 296-317, March.
    2. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    3. Bernd Schwaab & Andre Lucas & Siem Jan Koopman, 2010. "Systemic Risk Diagnostics," Tinbergen Institute Discussion Papers 10-104/2/DSF 2, Tinbergen Institute, revised 29 Nov 2010.
    4. Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2014. "Nowcasting and forecasting global financial sector stress and credit market dislocation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 741-758.
    5. Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2011. "Systemic risk diagnostics: coincident indicators and early warning signals," Working Paper Series 1327, European Central Bank.
    6. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
    7. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    8. Pu, Xiaoling & Zhao, Xinlei, 2012. "Correlation in credit risk changes," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1093-1106.
    9. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    10. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    11. Wolff, Christian & Bams, Dennis & Pisa, Magdalena, 2015. "Credit risk characteristics of US small business portfolios," CEPR Discussion Papers 10889, C.E.P.R. Discussion Papers.
    12. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    13. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    14. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    15. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2012. "Dynamic Factor Models With Macro, Frailty, and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 521-532, May.
    16. Haipeng Xing & Yang Yu, 2018. "Firm’s Credit Risk in the Presence of Market Structural Breaks," Risks, MDPI, vol. 6(4), pages 1-16, December.
    17. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.
    18. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    19. Dan Luo & Dragon Yongjun Tang & Sarah Qian Wang, 2018. "Model specification and collateralized debt obligation (mis)pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1284-1312, November.
    20. Peter Christoffersen & Kris Jacobs & Xisong Jin & Hugues Langlois, 2018. "Dynamic Dependence and Diversification in Corporate Credit [Asymmetric correlations of equity portfolios]," Review of Finance, European Finance Association, vol. 22(2), pages 521-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:162:y:2011:i:2:p:312-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.