Using favorite data to analyze asymmetric competition: Machine learning models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2020.03.074
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- P. K. Kannan & Susan M. Sanchez, 1994. "Competitive Market Structures: A Subset Selection Analysis," Management Science, INFORMS, vol. 40(11), pages 1484-1499, November.
- Lamas, Alejandro & Chevalier, Philippe, 2018.
"Joint dynamic pricing and lot-sizing under competition,"
European Journal of Operational Research, Elsevier, vol. 266(3), pages 864-876.
- LAMAS Alejandro & CHEVALIER Philippe, 2017. "Joint dynamic pricing and lot-sizing under competition," LIDAM Discussion Papers CORE 2017023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Alejandro Lamas & Philippe Chevalier, 2018. "Joint dynamic pricing and lot-sizing under competition," LIDAM Reprints CORE 2938, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Stephen L. France & Sanjoy Ghose, 2016. "An Analysis and Visualization Methodology for Identifying and Testing Market Structure," Marketing Science, INFORMS, vol. 35(1), pages 182-197, January.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Kfir Eliaz & Ran Spiegler, 2011.
"Consideration Sets and Competitive Marketing,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(1), pages 235-262.
- Eliaz, Kfir & Spiegler, Ran, 2006. "Consideration Sets and Competitive Marketing," MPRA Paper 21434, University Library of Munich, Germany, revised 03 Sep 2009.
- Spiegler, Ran & Eliaz, Kfir, 2009. "Consideration Sets and Competitive Marketing," CEPR Discussion Papers 7456, C.E.P.R. Discussion Papers.
- Heath, Timothy B, et al, 2000. "Asymmetric Competition in Choice and the Leveraging of Competitive Disadvantages," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 27(3), pages 291-308, December.
- Nazemi, Abdolreza & Heidenreich, Konstantin & Fabozzi, Frank J., 2018. "Improving corporate bond recovery rate prediction using multi-factor support vector regressions," European Journal of Operational Research, Elsevier, vol. 271(2), pages 664-675.
- Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
- Mandel, Antoine & Venel, Xavier, 2020.
"Dynamic competition over social networks,"
European Journal of Operational Research, Elsevier, vol. 280(2), pages 597-608.
- Antoine Mandel & Xavier Venel, 2017. "Dynamic competition over social networks," Documents de travail du Centre d'Economie de la Sorbonne 17021, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Antoine Mandel & Xavier Venel, 2020. "Dynamic competition over social networks," Post-Print halshs-02334595, HAL.
- Antoine Mandel & Xavier Venel, 2020. "Dynamic competition over social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02334595, HAL.
- Antoine Mandel & Xavier Venel, 2020. "Dynamic competition over social networks," PSE-Ecole d'économie de Paris (Postprint) halshs-02334595, HAL.
- Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
- Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
- Timothy B. Heath & Gangseog Ryu & Subimal Chatterjee & Michael S. Mccarthy & David L. Mothersbaugh & Sandra J. Milberg & Gary J. Gaeth, 2000. "Asymmetric Competition in Choice and the Leveraging of Competitive Disadvantages," Post-Print hal-00668916, HAL.
- Mesak, Hani I. & Bari, Abdullahel & Luehlfing, Michael S. & Han, Fei, 2015. "On modeling the advertising-operations interface under asymmetric competition," European Journal of Operational Research, Elsevier, vol. 240(1), pages 278-291.
- Gautam Pant & Olivia R. L. Sheng, 2015. "Web Footprints of Firms: Using Online Isomorphism for Competitor Identification," Information Systems Research, INFORMS, vol. 26(1), pages 188-209, March.
- Marshall Fisher & Ananth Raman, 2018. "Using Data and Big Data in Retailing," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1665-1669, September.
- Bruno J.D. Jacobs & Bas Donkers & Dennis Fok, 2016.
"Model-Based Purchase Predictions for Large Assortments,"
Marketing Science, INFORMS, vol. 35(3), pages 389-404, May.
- Jacobs, B.J.D. & Donkers, A.C.D. & Fok, D., 2016. "Model-based Purchase Predictions for Large Assortments," ERIM Report Series Research in Management ERS-2014-007-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
- Zhao, Xuan & Atkins, Derek & Hu, Ming & Zhang, Wensi, 2017. "Revenue management under joint pricing and capacity allocation competition," European Journal of Operational Research, Elsevier, vol. 257(3), pages 957-970.
- Baechle, Christopher & Huang, C. Derrick & Agarwal, Ankur & Behara, Ravi S. & Goo, Jahyun, 2020. "Latent topic ensemble learning for hospital readmission cost optimization," European Journal of Operational Research, Elsevier, vol. 281(3), pages 517-531.
- Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
- Sudhir Voleti & Praveen K. Kopalle & Pulak Ghosh, 2015. "An Interproduct Competition Model Incorporating Branding Hierarchy and Product Similarities Using Store-Level Data," Management Science, INFORMS, vol. 61(11), pages 2720-2738, November.
- Queen, Catriona M. & Smith, Jim Q. & James, David M., 1994. "Bayesian forecasts in markets with overlapping structures," International Journal of Forecasting, Elsevier, vol. 10(2), pages 209-233, September.
- Dilek, Hande & Karaer, Özgen & Nadar, Emre, 2018. "Retail location competition under carbon penalty," European Journal of Operational Research, Elsevier, vol. 269(1), pages 146-158.
- Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
- Wang, Yimin & Xiao, Yixuan & Yang, Nan, 2014. "Improving reliability of a shared supplier with competition and spillovers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 499-510.
- Damangir, Sina & Du, Rex Yuxing & Hu, Ye, 2018. "Uncovering Patterns of Product Co-consideration: A Case Study of Online Vehicle Price Quote Request Data," Journal of Interactive Marketing, Elsevier, vol. 42(C), pages 1-17.
- Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
- Rezapour, Shabnam & Farahani, Reza Zanjirani & Pourakbar, Morteza, 2017. "Resilient supply chain network design under competition: A case study," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1017-1035.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qian, Yang & Ling, Haifeng & Meng, Xiangrui & Jiang, Yuanchun & Chai, Yidong & Liu, Yezheng, 2024. "Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents," Journal of Business Research, Elsevier, vol. 180(C).
- Zhou, Meihua & Angelopoulos, Spyros & Ou, Carol & Liu, Hongwei & Liang, Zhouyang, 2023. "Optimization of dynamic product offerings on online marketplaces: A network theory perspective," Other publications TiSEM 75d71155-88bf-4ff7-aba1-9, Tilburg University, School of Economics and Management.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Hyowon Kim & Greg M. Allenby, 2022. "Integrating Textual Information into Models of Choice and Scaled Response Data," Marketing Science, INFORMS, vol. 41(4), pages 815-830, July.
- Maximilian Matthe & Daniel M. Ringel & Bernd Skiera, 2023. "Mapping Market Structure Evolution," Marketing Science, INFORMS, vol. 42(3), pages 589-613, May.
- Adam N. Smith & Jim E. Griffin, 2023. "Shrinkage priors for high-dimensional demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 21(1), pages 95-146, March.
- Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
- Alzate, Miriam & Arce-Urriza, Marta & Cebollada, Javier, 2022. "Mining the text of online consumer reviews to analyze brand image and brand positioning," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
- Yang Qian & Yuanchun Jiang & Yanan Du & Jianshan Sun & Yezheng Liu, 2020. "Segmenting market structure from multi-channel clickstream data: a novel generative model," Electronic Commerce Research, Springer, vol. 20(3), pages 509-533, September.
- Chadwick J. Miller & Daniel C. Brannon & Jim Salas & Martha Troncoza, 2021. "Advertising, incentives, and the upsell: how advertising differentially moderates customer- vs. retailer-directed price incentives’ impact on consumers’ preferences for premium products," Journal of the Academy of Marketing Science, Springer, vol. 49(6), pages 1043-1064, November.
- Eric Johnson & Simon Gaechter & Andreas Herrmann, 2006.
"Exploring the Nature of Loss Aversion,"
Discussion Papers
2006-02, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
- Eric Johnson & Simon Gaechter & Andreas Herrmann, 2006. "Exploring the Nature of Loss Aversion," Discussion Papers 2006-02, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
- Johnson, Eric J. & Gächter, Simon & Herrmann, Andreas, 2006. "Exploring the Nature of Loss Aversion," IZA Discussion Papers 2015, Institute of Labor Economics (IZA).
- Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
- Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176R, Cowles Foundation for Research in Economics, Yale University, revised Sep 2020.
- Marc R. Dotson & Joachim Büschken & Greg M. Allenby, 2020. "Explaining Preference Heterogeneity with Mixed Membership Modeling," Marketing Science, INFORMS, vol. 39(2), pages 407-426, March.
- Dellaert, B.G.C. & Stremersch, S., 2004.
"Consumer Preferences for Mass Customization,"
ERIM Report Series Research in Management
ERS-2004-087-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Dellaert, B.G.C. & Stremersch, S., 2004. "Consumer preferences for mass customization," Research Memorandum 042, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Sander, H. & Kleimeier, S., 2004. "Interest rate pass-through in an enlarged Europe: the role of banking market structure for monetary policy transmission in transition countries," Research Memorandum 044, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bruno Jacobs & Dennis Fok & Bas Donkers, 2021.
"Understanding Large-Scale Dynamic Purchase Behavior,"
Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.
- Jacobs, B.J.D. & Fok, D. & Donkers, A.C.D., 2020. "Understanding Large-Scale Dynamic Purchase Behavior," ERIM Report Series Research in Management ERS-2020-010-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
More about this item
Keywords
Market structure; Asymmetric competition; Dirichlet process; Bipartite graph model; Favorite data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:2:p:600-615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.