IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v65y2014i3p393-407.html
   My bibliography  Save this article

Forecasting probabilities of default and loss rates given default in the presence of selection

Author

Listed:
  • D Rösch

    (Leibniz Universit&aauml;t Hannover, Germany)

  • H Scheule

    (University of Technology, Sydney, Australia)

Abstract

This paper offers a joint estimation approach for forecasting probabilities of default and loss rates given default in the presence of selection. The approach accommodates fixed and random risk factors. An empirical analysis identifies bond ratings, borrower characteristics and macroeconomic information as important risk factors. A portfolio-level analysis finds evidence that common risk measurement approaches may underestimate bank capital by up to 17% relative to the presented model.

Suggested Citation

  • D Rösch & H Scheule, 2014. "Forecasting probabilities of default and loss rates given default in the presence of selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 393-407, March.
  • Handle: RePEc:pal:jorsoc:v:65:y:2014:i:3:p:393-407
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v65/n3/pdf/jors201282a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v65/n3/full/jors201282a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    2. Florian Kaposty & Philipp Klein & Matthias Löderbusch & Andreas Pfingsten, 2022. "Loss given default in SME leasing," Review of Managerial Science, Springer, vol. 16(5), pages 1561-1597, July.
    3. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    4. D’Amico, Guglielmo & Gismondi, Fulvio & Petroni, Filippo & Prattico, Flavio, 2019. "Stock market daily volatility and information measures of predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 22-29.
    5. Abdelkader Derbali & Lamia Jamel, 2019. "Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Case of Greek Banks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 711-733, June.
    6. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    7. Lützenkirchen, Kristina & Rösch, Daniel & Scheule, Harald, 2014. "Asset portfolio securitizations and cyclicality of regulatory capital," European Journal of Operational Research, Elsevier, vol. 237(1), pages 289-302.
    8. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    9. Alexander M. Karminsky & Ella Khromova, 2018. "Increase of banks’ credit risks forecasting power by the usage of the set of alternative models," Russian Journal of Economics, ARPHA Platform, vol. 4(2), pages 155-174, June.
    10. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    11. Nazemi, Abdolreza & Heidenreich, Konstantin & Fabozzi, Frank J., 2018. "Improving corporate bond recovery rate prediction using multi-factor support vector regressions," European Journal of Operational Research, Elsevier, vol. 271(2), pages 664-675.
    12. Jonathan Crook & David Edelman, 2014. "Special issue credit risk modelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 321-322, March.
    13. Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
    14. Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2021. "Systematic credit risk in securitised mortgage portfolios," Journal of Banking & Finance, Elsevier, vol. 122(C).
    15. Jennifer Betz & Maximilian Nagl & Daniel Rösch, 2022. "Credit line exposure at default modelling using Bayesian mixed effect quantile regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2035-2072, October.
    16. Ellen Tobback & David Martens & Tony Van Gestel & Bart Baesens, 2014. "Forecasting Loss Given Default models: impact of account characteristics and the macroeconomic state," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 376-392, March.
    17. Krüger, Steffen & Oehme, Toni & Rösch, Daniel & Scheule, Harald, 2018. "A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 246-262.
    18. Krüger, Steffen & Rösch, Daniel, 2017. "Downturn LGD modeling using quantile regression," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 42-56.
    19. Tetiana Payanok & Mariya Kamenchuk, 2019. "Analysis and Forecasting of the Bank's Performance: The Case of the Privatbank," Oblik i finansi, Institute of Accounting and Finance, issue 4, pages 78-87, December.
    20. Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2016. "Accuracy of mortgage portfolio risk forecasts during financial crises," European Journal of Operational Research, Elsevier, vol. 249(2), pages 440-456.
    21. Anastasios Petropoulos & Vasilis Siakoulis & Dionysios Mylonas & Aristotelis Klamargias, 2018. "A combined statistical framework for forecasting default rates of Greek Financial Institutions' credit portfolios," Working Papers 243, Bank of Greece.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:65:y:2014:i:3:p:393-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.