IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v186y2024ics1366554524001297.html
   My bibliography  Save this article

A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem

Author

Listed:
  • Jin, Zhongyi
  • Ng, Kam K.H.
  • Zhang, Chenliang
  • Liu, Wei
  • Zhang, Fangni
  • Xu, Gangyan

Abstract

Drone-supported last-mile humanitarian logistics applications play a crucial role in the rapid and efficient delivery of essential relief items, such as medicine, blood, and vaccines, during disaster and emergency situations. This paper explores a novel drone-supported relief facility location problem (DSRFLP) aimed at establishing an effective drone-supported last-mile humanitarian logistics system. The problem involves making joint decisions for both pre-disaster and post-disaster phases while considering the characteristics of drone-based delivery operations and uncertain demands. In the pre-disaster phase, we make the decisions regarding the locations of drone-supported relief facilities, inventory prepositioning of relief items, assignment of drones to the opened facilities, and allocation of drones to disaster demand sites. In the post-disaster phase, we make decisions related to delivery quantities. To tackle the challenge of incomplete demand distribution information in chaotic disaster environments, we establish a distributionally robust optimisation (DRO) model to handle the uncertainty of demands. This model adopts worst-case mean Conditional Value-at-Risk as the risk measurement, reflecting the risk-averse attitude of humanitarian organisers. In this paper, three ambiguity sets (box, ellipsoidal, and polyhedral) are considered to describe the ambiguity distributions of demands. To overcome the computational challenge, we reformulate the DRO model under three ambiguity sets into two mixed-integer linear programming models and one second-order cone programming model, which can be efficiently solved by off-the-shelf solvers. Furthermore, we validate our proposed DRO model through a small-scale example and a large-scale case study based on the Lushan earthquake in China. The computational outcomes underscore the superior performance of the proposed DRO model to mitigate the impact arising from incomplete probability distributions. We propose managerial implications and insights to support the decision-making of humanitarian organisations based on the experimental results. Finally, we propose two extended models to incorporate multiple relief items and equity constraints in priority settings and conduct numerical experiments to adapt to various real-world disaster scenarios.

Suggested Citation

  • Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001297
    DOI: 10.1016/j.tre.2024.103538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524001297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Jia Shu & Miao Song & Beilun Wang & Jing Yang & Shaowen Zhu, 2023. "Humanitarian relief network design: Responsiveness maximization and a case study of Typhoon Rammasun," IISE Transactions, Taylor & Francis Journals, vol. 55(3), pages 301-313, March.
    3. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    4. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    5. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    6. Wenjun Ni & Jia Shu & Miao Song, 2018. "Location and Emergency Inventory Pre†Positioning for Disaster Response Operations: Min†Max Robust Model and a Case Study of Yushu Earthquake," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 160-183, January.
    7. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.
    8. Nilay Noyan & Burcu Balcik & Semih Atakan, 2016. "A Stochastic Optimization Model for Designing Last Mile Relief Networks," Transportation Science, INFORMS, vol. 50(3), pages 1092-1113, August.
    9. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    10. Chen, Heng & Hu, Zhangchen & Solak, Senay, 2021. "Improved delivery policies for future drone-based delivery systems," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1181-1201.
    11. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    12. Qiu, Ruozhen & Shang, Jennifer & Huang, Xiaoyuan, 2014. "Robust inventory decision under distribution uncertainty: A CVaR-based optimization approach," International Journal of Production Economics, Elsevier, vol. 153(C), pages 13-23.
    13. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    14. Serhan Duran & Marco A. Gutierrez & Pinar Keskinocak, 2011. "Pre-Positioning of Emergency Items for CARE International," Interfaces, INFORMS, vol. 41(3), pages 223-237, June.
    15. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    16. He, Xinyu & He, Fang & Li, Lishuai & Zhang, Lei & Xiao, Gang, 2022. "A route network planning method for urban air delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    17. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Dongwook Kim & Kyungsik Lee & Ilkyeong Moon, 2019. "Stochastic facility location model for drones considering uncertain flight distance," Annals of Operations Research, Springer, vol. 283(1), pages 1283-1302, December.
    19. Guan, Zhimin & Mou, Yuxia & Zhang, Jun, 2024. "Incorporating risk aversion and time preference into omnichannel retail operations considering assortment and inventory optimization," European Journal of Operational Research, Elsevier, vol. 314(2), pages 579-596.
    20. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    21. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    22. Ling, Aifan & Sun, Jie & Xiu, Naihua & Yang, Xiaoguang, 2017. "Robust two-stage stochastic linear optimization with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 215-229.
    23. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    24. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    25. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    26. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    27. Duo Wang & Kai Yang & Lixing Yang, 2023. "Risk-averse two-stage distributionally robust optimisation for logistics planning in disaster relief management," International Journal of Production Research, Taylor & Francis Journals, vol. 61(2), pages 668-691, January.
    28. Tofighi, S. & Torabi, S.A. & Mansouri, S.A., 2016. "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 239-250.
    29. Emre Çankaya & Ali Ekici & Okan Örsan Özener, 2019. "Humanitarian relief supplies distribution: an application of inventory routing problem," Annals of Operations Research, Springer, vol. 283(1), pages 119-141, December.
    30. Wapee Manopiniwes & Takashi Irohara, 2017. "Stochastic optimisation model for integrated decisions on relief supply chains: preparedness for disaster response," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 979-996, February.
    31. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    32. Akbari, Vahid & Shiri, Davood & Sibel Salman, F., 2021. "An online optimization approach to post-disaster road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 1-25.
    33. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    34. Yuqiang Feng & Yanju Chen & Yankui Liu, 2023. "Optimising two-stage robust supplier selection and order allocation problem under risk-averse criterion," International Journal of Production Research, Taylor & Francis Journals, vol. 61(19), pages 6356-6380, October.
    35. Mohsen Yahyaei & Ali Bozorgi-Amiri, 2019. "Robust reliable humanitarian relief network design: an integration of shelter and supply facility location," Annals of Operations Research, Springer, vol. 283(1), pages 897-916, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    2. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    3. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    4. Wang, Duo & Yang, Kai & Yuen, Kum Fai & Yang, Lixing & Dong, Jianjun, 2024. "Hybrid risk-averse location-inventory-allocation with secondary disaster considerations in disaster relief logistics: A distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    5. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    6. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).
    7. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    8. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    9. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    10. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    11. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    12. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    13. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    14. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    15. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    16. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    17. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    18. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    19. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    20. Dukkanci, Okan & Koberstein, Achim & Kara, Bahar Y., 2023. "Drones for relief logistics under uncertainty after an earthquake," European Journal of Operational Research, Elsevier, vol. 310(1), pages 117-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.