IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v260y2017i1p195-211.html
   My bibliography  Save this article

Risk-averse stochastic path detection

Author

Listed:
  • Collado, Ricardo
  • Meisel, Stephan
  • Priekule, Laura

Abstract

We introduce the stochastic path detection problem and propose a risk-averse solution approach. The problem comprises an invader and a protector that both operate on a network with a number of possible source-destination paths. The protector aims at allocating security resources on the network such that the invader’s path is detected with high probability. The invader’s choice of path is known to the protector in terms of a probability distribution reflecting the protector’s beliefs. Errors in these beliefs induce the risk of a low detection probability. We derive a linear programming approximation and leverage the theory of coherent risk measures to consider risk-aversion with respect to errors in the protector’s beliefs. The performance of the resulting risk-averse detection policy is numerically compared with the performance of the risk-neutral policy. We show that the risk-averse policy significantly mitigates the risk of facing a low detection probability in the presence of large errors in the protector’s beliefs.

Suggested Citation

  • Collado, Ricardo & Meisel, Stephan & Priekule, Laura, 2017. "Risk-averse stochastic path detection," European Journal of Operational Research, Elsevier, vol. 260(1), pages 195-211.
  • Handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:195-211
    DOI: 10.1016/j.ejor.2016.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716310219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Conditional Risk Mappings," Risk and Insurance 0404002, University Library of Munich, Germany, revised 08 Oct 2005.
    2. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    3. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Conditional Risk Mappings," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 544-561, August.
    4. Andrzej Ruszczyński & Alexander Shapiro, 2007. "Corrigendum to: “Optimization of Convex Risk Functions,” Mathematics of Operations Research 31 (2006) 433--452," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 496-496, May.
    5. Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
    6. Yongjia Song & Siqian Shen, 2016. "Risk-Averse Shortest Path Interdiction," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 527-539, August.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    9. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    10. Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
    11. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Nandi, Apurba K. & Halappanavar, Mahantesh, 2021. "Risk-averse bi-level stochastic network interdiction model for cyber-security risk management," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    2. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    2. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    3. Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
    4. Malekipirbazari, Milad & Çavuş, Özlem, 2024. "Index policy for multiarmed bandit problem with dynamic risk measures," European Journal of Operational Research, Elsevier, vol. 312(2), pages 627-640.
    5. Georg Pflug & Nancy Wozabal, 2010. "Asymptotic distribution of law-invariant risk functionals," Finance and Stochastics, Springer, vol. 14(3), pages 397-418, September.
    6. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    7. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.
    8. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    9. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    10. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    11. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2010. "CAPM and APT-like models with risk measures," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1166-1174, June.
    12. Sıtkı Gülten & Andrzej Ruszczyński, 2015. "Two-stage portfolio optimization with higher-order conditional measures of risk," Annals of Operations Research, Springer, vol. 229(1), pages 409-427, June.
    13. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    14. R. Tyrrell Rockafellar & Stan Uryasev & Michael Zabarankin, 2008. "Risk Tuning with Generalized Linear Regression," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 712-729, August.
    15. Shapiro, Alexander, 2012. "Minimax and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 719-726.
    16. repec:hum:wpaper:sfb649dp2007-010 is not listed on IDEAS
    17. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    18. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    19. Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
    20. Alois Pichler & Ruben Schlotter, 2020. "Quantification of Risk in Classical Models of Finance," Papers 2004.04397, arXiv.org, revised Feb 2021.
    21. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:195-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.