IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v254y2017i1d10.1007_s10479-017-2397-3.html
   My bibliography  Save this article

A quantitative comparison of risk measures

Author

Listed:
  • Alois Pichler

    (Technische Universität Chemnitz, Fakultät für Mathematik)

Abstract

The choice of a risk measure reflects a subjective preference of the decision maker in many managerial or real world economic problem formulations. To assess the impact of personal preferences it is thus of interest to have comparisons with other risk measures at hand. This paper develops a framework for comparing different risk measures. We establish a one-to-one relationship between norms and risk measures, that is, we associate a norm with a risk measure and conversely, we use norms to recover a genuine risk measure. The methods allow tight comparisons of risk measures and tight lower and upper bounds for risk measures are made available whenever possible. In this way we present a general framework for comparing risk measures with applications in numerous directions.

Suggested Citation

  • Alois Pichler, 2017. "A quantitative comparison of risk measures," Annals of Operations Research, Springer, vol. 254(1), pages 251-275, July.
  • Handle: RePEc:spr:annopr:v:254:y:2017:i:1:d:10.1007_s10479-017-2397-3
    DOI: 10.1007/s10479-017-2397-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2397-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2397-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. PAVLO A. Krokhmal, 2007. "Higher moment coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 373-387.
    2. Georg Ch. Pflug & Alois Pichler, 2016. "Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 682-699, May.
    3. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    4. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    5. Fabio Bellini & Camilla Caperdoni, 2007. "Coherent Distortion Risk Measures and Higher-Order Stochastic Dominances," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 35-42.
    6. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    7. van Heerwaarden, A. E. & Kaas, R., 1992. "The Dutch premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 11(2), pages 129-133, August.
    8. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    9. Pichler, Alois & Shapiro, Alexander, 2015. "Minimal representation of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 184-193.
    10. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    11. Naomi Miller & Andrzej Ruszczyński, 2011. "Risk-Averse Two-Stage Stochastic Linear Programming: Modeling and Decomposition," Operations Research, INFORMS, vol. 59(1), pages 125-132, February.
    12. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    13. Pichler, Alois, 2013. "The natural Banach space for version independent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 405-415.
    14. Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
    15. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    16. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    17. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    18. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2010. "Kusuoka representation of higher order dual risk measures," Annals of Operations Research, Springer, vol. 181(1), pages 325-335, December.
    19. López-Díaz, Miguel & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2012. "On the Lp-metric between a probability distribution and its distortion," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 257-264.
    20. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    21. Patrick Cheridito & Michael Kupper, 2011. "Composition Of Time-Consistent Dynamic Monetary Risk Measures In Discrete Time," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 137-162.
    22. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    23. De Lara, Michel & Leclère, Vincent, 2016. "Building up time-consistency for risk measures and dynamic optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 177-187.
    24. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Conditional Risk Mappings," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 544-561, August.
    25. Alexander Shapiro, 2016. "Rectangular Sets of Probability Measures," Operations Research, INFORMS, vol. 64(2), pages 528-541, April.
    26. Bellini, Fabio & Rosazza Gianin, Emanuela, 2012. "Haezendonck–Goovaerts risk measures and Orlicz quantiles," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 107-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alois Pichler, 2024. "Higher order measures of risk and stochastic dominance," Papers 2402.15387, arXiv.org.
    2. Chen Shengzhong & Gao Niushan & Xanthos Foivos, 2018. "The strong Fatou property of risk measures," Dependence Modeling, De Gruyter, vol. 6(1), pages 183-196, October.
    3. Alois Pichler, 2024. "Connection between higher order measures of risk and stochastic dominance," Computational Management Science, Springer, vol. 21(2), pages 1-28, December.
    4. Behnam Malakooti & Mohamed Komaki & Camelia Al-Najjar, 2021. "Basic Geometric Dispersion Theory of Decision Making Under Risk: Asymmetric Risk Relativity, New Predictions of Empirical Behaviors, and Risk Triad," Decision Analysis, INFORMS, vol. 18(1), pages 41-77, March.
    5. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    6. Amir Ahmadi-Javid & Malihe Fallah-Tafti, 2017. "Portfolio Optimization with Entropic Value-at-Risk," Papers 1708.05713, arXiv.org.
    7. Tom Erik Sønsteng Henriksen & Alois Pichler & Sjur Westgaard & Stein Frydenberg, 2019. "Can commodities dominate stock and bond portfolios?," Annals of Operations Research, Springer, vol. 282(1), pages 155-177, November.
    8. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    9. Yuliya Mishura & Kostiantyn Ralchenko & Petro Zelenko & Volodymyr Zubchenko, 2024. "Properties of the entropic risk measure EVaR in relation to selected distributions," Papers 2403.01468, arXiv.org.
    10. Gao, Niushan & Munari, Cosimo & Xanthos, Foivos, 2020. "Stability properties of Haezendonck–Goovaerts premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 94-99.
    11. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    12. Danny Samson & Pat Foley & Heng Soon Gan & Marianne Gloet, 2018. "Multi-stakeholder decision theory," Annals of Operations Research, Springer, vol. 268(1), pages 357-386, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pichler, Alois & Shapiro, Alexander, 2015. "Minimal representation of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 184-193.
    2. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    3. Georg Ch. Pflug & Alois Pichler, 2016. "Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 682-699, May.
    4. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    5. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    6. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    7. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    8. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.
    9. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    10. Henri G'erard & Michel de Lara & Jean-Philippe Chancelier, 2017. "Equivalence Between Time Consistency and Nested Formula," Papers 1711.08633, arXiv.org, revised May 2019.
    11. Jonathan Yu-Meng Li, 2016. "Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization," Papers 1609.04065, arXiv.org.
    12. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    13. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    14. Pichler, Alois & Schlotter, Ruben, 2020. "Entropy based risk measures," European Journal of Operational Research, Elsevier, vol. 285(1), pages 223-236.
    15. Henri Gérard & Michel Lara & Jean-Philippe Chancelier, 2020. "Equivalence between time consistency and nested formula," Annals of Operations Research, Springer, vol. 292(2), pages 627-647, September.
    16. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    17. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    18. Alois Pichler & Ruben Schlotter, 2020. "Quantification of Risk in Classical Models of Finance," Papers 2004.04397, arXiv.org, revised Feb 2021.
    19. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    20. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:254:y:2017:i:1:d:10.1007_s10479-017-2397-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.