Discrete representation of non-dominated sets in multi-objective linear programming
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2016.05.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lizhen Shao & Matthias Ehrgott, 2008. "Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 257-276, October.
- Stacey Faulkenberg & Margaret Wiecek, 2012. "Generating equidistant representations in biobjective programming," Computational Optimization and Applications, Springer, vol. 51(3), pages 1173-1210, April.
- S. Ruzika & M. M. Wiecek, 2005. "Approximation Methods in Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 473-501, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kai Kang & Wei Pu & Yanfang Ma & Xiaoyu Wang, 2018. "Bi-objective inventory allocation planning problem with supplier selection and carbon trading under uncertainty," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-25, November.
- Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
- Angelo Aliano Filho & Antonio Carlos Moretti & Margarida Vaz Pato & Washington Alves Oliveira, 2021. "An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems," Annals of Operations Research, Springer, vol. 296(1), pages 35-69, January.
- Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
- Oylum S¸eker & Mucahit Cevik & Merve Bodur & Young Lee & Mark Ruschin, 2023. "A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 248-264, January.
- Bazgan, Cristina & Jamain, Florian & Vanderpooten, Daniel, 2017. "Discrete representation of the non-dominated set for multi-objective optimization problems using kernels," European Journal of Operational Research, Elsevier, vol. 260(3), pages 814-827.
- Ali Najmi & Taha H. Rashidi & James Vaughan & Eric J. Miller, 2020. "Calibration of large-scale transport planning models: a structured approach," Transportation, Springer, vol. 47(4), pages 1867-1905, August.
- E. Filatovas & O. Kurasova & J. L. Redondo & J. Fernández, 2020. "A reference point-based evolutionary algorithm for approximating regions of interest in multiobjective problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 402-423, July.
- Eichfelder, Gabriele & Warnow, Leo, 2023. "Advancements in the computation of enclosures for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 310(1), pages 315-327.
- Kuan-Min Lin & Matthias Ehrgott & Andrea Raith, 2017. "Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes," 4OR, Springer, vol. 15(4), pages 331-357, December.
- Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
- Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
- Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
- Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
- Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
- Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
- Kathrin Klamroth & Kaisa Miettinen, 2008. "Integrating Approximation and Interactive Decision Making in Multicriteria Optimization," Operations Research, INFORMS, vol. 56(1), pages 222-234, February.
- Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
- Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
- Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011.
"Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets,"
INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
- Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Discussion Paper 2009-52, Tilburg University, Center for Economic Research.
- Lizhen Shao & Matthias Ehrgott, 2008. "Approximating the nondominated set of an MOLP by approximately solving its dual problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 469-492, December.
- Stacey Faulkenberg & Margaret Wiecek, 2012. "Generating equidistant representations in biobjective programming," Computational Optimization and Applications, Springer, vol. 51(3), pages 1173-1210, April.
- Nguyen, Trung H. & Granger, Julien & Pandya, Deval & Paustian, Keith, 2019. "High-resolution multi-objective optimization of feedstock landscape design for hybrid first and second generation biorefineries," Applied Energy, Elsevier, vol. 238(C), pages 1484-1496.
- Birgit Rudloff & Firdevs Ulus, 2019. "Certainty Equivalent and Utility Indifference Pricing for Incomplete Preferences via Convex Vector Optimization," Papers 1904.09456, arXiv.org, revised Oct 2020.
- Lim, Dong-Joon, 2016. "Inverse DEA with frontier changes for new product target setting," European Journal of Operational Research, Elsevier, vol. 254(2), pages 510-516.
- Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.
- Amir Ahmadi-Javid & Nasrin Ramshe, 2019. "Designing flexible loop-based material handling AGV paths with cell-adjacency priorities: an efficient cutting-plane algorithm," 4OR, Springer, vol. 17(4), pages 373-400, December.
- Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
- Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
- Angelo Aliano Filho & Antonio Carlos Moretti & Margarida Vaz Pato & Washington Alves Oliveira, 2021. "An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems," Annals of Operations Research, Springer, vol. 296(1), pages 35-69, January.
More about this item
Keywords
Multi-objective optimisation; Linear programming; Non-dominated set; Discrete representation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:255:y:2016:i:3:p:687-698. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.