IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v68y2008i2p257-276.html
   My bibliography  Save this article

Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning

Author

Listed:
  • Lizhen Shao
  • Matthias Ehrgott

Abstract

In this paper, we propose a modification of Benson’s algorithm for solving multiobjective linear programmes in objective space in order to approximate the true nondominated set. We first summarize Benson’s original algorithm and propose some small changes to improve computational performance. We then introduce our approximation version of the algorithm, which computes an inner and an outer approximation of the nondominated set. We prove that the inner approximation provides a set of $${\varepsilon}$$ -nondominated points. This work is motivated by an application, the beam intensity optimization problem of radiotherapy treatment planning. This problem can be formulated as a multiobjective linear programme with three objectives. The constraint matrix of the problem relies on the calculation of dose deposited in tissue. Since this calculation is always imprecise solving the MOLP exactly is not necessary in practice. With our algorithm we solve the problem approximately within a specified accuracy in objective space. We present results on four clinical cancer cases that clearly illustrate the advantages of our method. Copyright Springer-Verlag 2008

Suggested Citation

  • Lizhen Shao & Matthias Ehrgott, 2008. "Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 257-276, October.
  • Handle: RePEc:spr:mathme:v:68:y:2008:i:2:p:257-276
    DOI: 10.1007/s00186-008-0220-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0220-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0220-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    2. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    3. Piercy, Craig A. & Steuer, Ralph E., 2019. "Reducing wall-clock time for the computation of all efficient extreme points in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 277(2), pages 653-666.
    4. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Other publications TiSEM 795b6c0c-c7bc-4ced-9d6b-a, Tilburg University, School of Economics and Management.
    5. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    6. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
    7. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    8. Kazhal Khaledian & Esmaile Khorram & Majid Soleimani-damaneh, 2016. "Strongly Proper Efficient Solutions: Efficient Solutions with Bounded Trade-Offs," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 864-883, March.
    9. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    10. Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
    11. Matthias Ehrgott & Andreas Löhne & Lizhen Shao, 2012. "A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming," Journal of Global Optimization, Springer, vol. 52(4), pages 757-778, April.
    12. Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
    13. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    14. Pornpimon Boriwan & Matthias Ehrgott & Daishi Kuroiwa & Narin Petrot, 2020. "The Lexicographic Tolerable Robustness Concept for Uncertain Multi-Objective Optimization Problems: A Study on Water Resources Management," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    15. Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.
    16. Shao, Lizhen & Ehrgott, Matthias, 2016. "Discrete representation of non-dominated sets in multi-objective linear programming," European Journal of Operational Research, Elsevier, vol. 255(3), pages 687-698.
    17. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
    18. Kuan-Min Lin & Matthias Ehrgott & Andrea Raith, 2017. "Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes," 4OR, Springer, vol. 15(4), pages 331-357, December.
    19. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
    20. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    2. Esra Karasakal & Murat Köksalan, 2009. "Generating a Representative Subset of the Nondominated Frontier in Multiple Criteria Decision Making," Operations Research, INFORMS, vol. 57(1), pages 187-199, February.
    3. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    4. Henri Bonnel & Julien Collonge, 2015. "Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case," Journal of Global Optimization, Springer, vol. 62(3), pages 481-505, July.
    5. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
    6. J. Fülöp & L. D. Muu, 2000. "Branch-and-Bound Variant of an Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 37-54, April.
    7. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    8. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Other publications TiSEM 795b6c0c-c7bc-4ced-9d6b-a, Tilburg University, School of Economics and Management.
    9. Benson, Harold P. & Sun, Erjiang, 2002. "A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 139(1), pages 26-41, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:68:y:2008:i:2:p:257-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.