IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v56y2008i1p222-234.html
   My bibliography  Save this article

Integrating Approximation and Interactive Decision Making in Multicriteria Optimization

Author

Listed:
  • Kathrin Klamroth

    (Institute of Applied Mathematics, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany)

  • Kaisa Miettinen

    (Department of Mathematical Information Technology, FI-40014 University of Jyvaskyla, Finland, and Helsinki School of Economics, FI-00101 Helsinki, Finland)

Abstract

We present a new interactive hybrid approach for solving multicriteria optimization problems where features of approximation methods and interactive approaches are incorporated. We produce rough approximations of the nondominated set and let the decision maker indicate with the help of reference points where to refine the approximation. In this way, (s)he iteratively directs the search toward the best nondominated solution. After the decision maker has identified the most interesting region of the nondominated set, the final solution can be fine-tuned with existing interactive methods. We suggest different ways of updating the reference point as well as discuss visualizations that can be used in comparing different nondominated solutions. The new method is computationally relatively inexpensive and easy to use for the decision maker.

Suggested Citation

  • Kathrin Klamroth & Kaisa Miettinen, 2008. "Integrating Approximation and Interactive Decision Making in Multicriteria Optimization," Operations Research, INFORMS, vol. 56(1), pages 222-234, February.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:1:p:222-234
    DOI: 10.1287/opre.1070.0425
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0425
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Ruzika & M. M. Wiecek, 2005. "Approximation Methods in Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 473-501, September.
    2. Miettinen, Kaisa & Makela, Marko M., 2006. "Synchronous approach in interactive multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 170(3), pages 909-922, May.
    3. K Miettinen & M M Mäkelä, 1999. "Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 949-959, September.
    4. Korhonen, Pekka J. & Laakso, Jukka, 1986. "A visual interactive method for solving the multiple criteria problem," European Journal of Operational Research, Elsevier, vol. 24(2), pages 277-287, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    2. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    3. Markus Hartikainen & Alberto Lovison, 2015. "PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 62(2), pages 243-261, June.
    4. Xiaoning Shen & Yu Guo & Qingwei Chen & Weili Hu, 2010. "A multi-objective optimization evolutionary algorithm incorporating preference information based on fuzzy logic," Computational Optimization and Applications, Springer, vol. 46(1), pages 159-188, May.
    5. Kaliszewski, Ignacy & Miroforidis, Janusz & Podkopaev, Dmitry, 2012. "Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy," European Journal of Operational Research, Elsevier, vol. 216(1), pages 188-199.
    6. Ruiz, Ana B. & Sindhya, Karthik & Miettinen, Kaisa & Ruiz, Francisco & Luque, Mariano, 2015. "E-NAUTILUS: A decision support system for complex multiobjective optimization problems based on the NAUTILUS method," European Journal of Operational Research, Elsevier, vol. 246(1), pages 218-231.
    7. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
    8. Lou, Youcheng & Wang, Shouyang, 2016. "Approximate representation of the Pareto frontier in multiparty negotiations: Decentralized methods and privacy preservation," European Journal of Operational Research, Elsevier, vol. 254(3), pages 968-976.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, Francisco & Luque, Mariano & Miguel, Francisca & del Mar Munoz, Maria, 2008. "An additive achievement scalarizing function for multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 188(3), pages 683-694, August.
    2. Luque, Mariano & Miettinen, Kaisa & Eskelinen, Petri & Ruiz, Francisco, 2009. "Incorporating preference information in interactive reference point methods for multiobjective optimization," Omega, Elsevier, vol. 37(2), pages 450-462, April.
    3. Luque, M. & Marcenaro-Gutiérrez, O.D. & López-Agudo, L.A., 2015. "On the potential balance among compulsory education outcomes through econometric and multiobjective programming analysis," European Journal of Operational Research, Elsevier, vol. 241(2), pages 527-540.
    4. Yadav, Deepanshu & Nagar, Deepak & Ramu, Palaniappan & Deb, Kalyanmoy, 2023. "Visualization-aided multi-criteria decision-making using interpretable self-organizing maps," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1183-1200.
    5. Hartikainen, Markus & Miettinen, Kaisa & Klamroth, Kathrin, 2019. "Interactive Nonconvex Pareto Navigator for multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 275(1), pages 238-251.
    6. Molina, Julin & Santana, Luis V. & Hernandez-Daz, Alfredo G. & Coello Coello, Carlos A. & Caballero, Rafael, 2009. "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 685-692, September.
    7. F Ruiz & M Luque & J M Cabello, 2009. "A classification of the weighting schemes in reference point procedures for multiobjective programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 544-553, April.
    8. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2011. "Constructing a Pareto front approximation for decision making," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 209-234, April.
    9. Francisco Ruiz & Mariano Luque & Kaisa Miettinen, 2012. "Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization," Annals of Operations Research, Springer, vol. 197(1), pages 47-70, August.
    10. A.P. Wierzbicki, 1998. "Reference Point Methods in Vector Optimization and Decision Support," Working Papers ir98017, International Institute for Applied Systems Analysis.
    11. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    12. Arbel, Ami & Korhonen, Pekka, 2001. "Using objective values to start multiple objective linear programming algorithms," European Journal of Operational Research, Elsevier, vol. 128(3), pages 587-596, February.
    13. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    14. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
    15. Mariano Luque & Rafael Caballero & Julian Molina & Francisco Ruiz, 2007. "Equivalent Information for Multiobjective Interactive Procedures," Management Science, INFORMS, vol. 53(1), pages 125-134, January.
    16. Steuer, Ralph E. & Utz, Sebastian, 2023. "Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing," European Journal of Operational Research, Elsevier, vol. 306(2), pages 742-753.
    17. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    18. Karaivanova, Jasmina & Korhonen, Pekka & Narula, Subhash & Wallenius, Jyrki & Vassilev, Vassil, 1995. "A reference direction approach to multiple objective integer linear programming," European Journal of Operational Research, Elsevier, vol. 81(1), pages 176-187, February.
    19. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    20. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:1:p:222-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.