IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v254y2016i2p510-516.html
   My bibliography  Save this article

Inverse DEA with frontier changes for new product target setting

Author

Listed:
  • Lim, Dong-Joon

Abstract

Inverse data envelopment analysis (DEA) is a reversed optimization problem that can serve as a useful planning tool for managerial decisions by providing information such as how much resources (or outcomes) should be invested (or produced) to achieve a desired level of competitiveness whereas the conventional DEA focuses mainly on a post-hoc assessment of the organizational performance. Inverse DEA studies however are based on an assumption that the efficiency level of observed decision making units (DMUs) will not change within the period of interest, which in fact confines the use of inverse DEA to a sensitivity analysis by simply addressing what alternative levels of input and/or output would have been possible to result in the same efficiency score obtained. In this paper, we discuss an inverse DEA problem considering expected changes of the production frontier in the future by integrating the inverse optimization problem with a time series application of DEA so that it can be an ex-ante decision support tool for the new product target setting practices. We use an example of the vehicle engine development case to demonstrate the proposed method.

Suggested Citation

  • Lim, Dong-Joon, 2016. "Inverse DEA with frontier changes for new product target setting," European Journal of Operational Research, Elsevier, vol. 254(2), pages 510-516.
  • Handle: RePEc:eee:ejores:v:254:y:2016:i:2:p:510-516
    DOI: 10.1016/j.ejor.2016.03.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716302053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.03.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Hadi-Vencheh, Abdollah & Foroughi, Ali Asghar & Soleimani-damaneh, Majid, 2008. "A DEA model for resource allocation," Economic Modelling, Elsevier, vol. 25(5), pages 983-993, September.
    3. Wei, Quanling & Zhang, Jianzhong & Zhang, Xiangsun, 2000. "An inverse DEA model for inputs/outputs estimate," European Journal of Operational Research, Elsevier, vol. 121(1), pages 151-163, February.
    4. S. Ruzika & M. M. Wiecek, 2005. "Approximation Methods in Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 473-501, September.
    5. Yan, Hong & Wei, Quanling & Hao, Gang, 2002. "DEA models for resource reallocation and production input/output estimation," European Journal of Operational Research, Elsevier, vol. 136(1), pages 19-31, January.
    6. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    7. Jahanshahloo, G.R. & Soleimani-damaneh, M. & Ghobadi, S., 2015. "Inverse DEA under inter-temporal dependence using multiple-objective programming," European Journal of Operational Research, Elsevier, vol. 240(2), pages 447-456.
    8. Saeid Ghobadi & Saeid Jahangiri, 2015. "Inverse DEA: Review, Extension and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 805-824.
    9. Lim, Dong-Joon & Anderson, Timothy R. & Shott, Tom, 2015. "Technological forecasting of supercomputer development: The March to Exascale computing," Omega, Elsevier, vol. 51(C), pages 128-135.
    10. Lim, Dong-Joon & Anderson, Timothy R. & Inman, Oliver Lane, 2014. "Choosing effective dates from multiple optima in Technology Forecasting using Data Envelopment Analysis (TFDEA)," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 91-97.
    11. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    12. Bougnol, M.-L. & Dulá, J.H., 2009. "Anchor points in DEA," European Journal of Operational Research, Elsevier, vol. 192(2), pages 668-676, January.
    13. Rolf Färe & Shawna Grosskopf & Dimitris Margaritis, 2011. "Malmquist Productivity Indexes and DEA," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 127-149, Springer.
    14. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moghaddas, Zohreh & Tosarkani, Babak Mohamadpour & Yousefi, Samuel, 2022. "Resource reallocation for improving sustainable supply chain performance: An inverse data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 252(C).
    2. Jeong-Hun Sin, 2020. "A study on the financial efficiency analysis method by redesigning the DEA model," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 347-363, June.
    3. Qingxian An & Xuyang Liu & Yongli Li & Beibei Xiong, 2019. "Resource planning of Chinese commercial banking systems using two-stage inverse data envelopment analysis with undesirable outputs," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-20, June.
    4. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    5. Ghiyasi, Mojtaba & Soltanifar, Mehdi & Sharafi, Hamid, 2022. "A novel inverse DEA-R model with application in hospital efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    6. Farzaneh Asadi & Sohrab Kordrostami & Alireza Amirteimoori & Morteza Bazrafshan, 2023. "Inverse data envelopment analysis without convexity: double frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 335-354, June.
    7. Mohammad Khoveyni & Robabeh Eslami, 2022. "Merging two-stage series network structures: A DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 273-302, March.
    8. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    9. Liang Hou & Roger J. Jiao, 2020. "Data-informed inverse design by product usage information: a review, framework and outlook," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 529-552, March.
    10. Sabri Boubaker & T.D.Q. Le & T. Ngo, 2023. "Managing Bank Performance under COVID-19: A Novel Inverse DEA Efficiency Approach," Post-Print hal-04435441, HAL.
    11. Lili Zhang & Zhengrui Chen & Dan Shi & Yanan Zhao, 2023. "An Inverse Optimal Value Approach for Synchronously Optimizing Activity Durations and Worker Assignments with a Project Ideal Cost," Mathematics, MDPI, vol. 11(5), pages 1-21, February.
    12. Gholam R. Amin & Ali Emrouznejad & Said Gattoufi, 2017. "Modelling generalized firms’ restructuring using inverse DEA," Journal of Productivity Analysis, Springer, vol. 48(1), pages 51-61, August.
    13. Lin, Winston T. & Chen, Yueh H. & Hung, TingShu, 2019. "A partial adjustment valuation approach with stochastic and dynamic speeds of partial adjustment to measuring and evaluating the business value of information technology," European Journal of Operational Research, Elsevier, vol. 272(2), pages 766-779.
    14. Shogo Eguchi & Hirotaka Takayabu & Mitsuki Kaneko & Shigemi Kagawa & Shunichi Hienuki, 2021. "Proposing effective strategies for meeting an environmental regulation with attainable technology improvement targets," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2907-2921, November.
    15. Gholam R. Amin & Mustapha Ibn Boamah, 2020. "A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks," Annals of Operations Research, Springer, vol. 295(1), pages 21-36, December.
    16. Zhang, Jingxiao & Jin, Weixing & Yang, Guo-liang & Li, Hui & Ke, Yongjian & Philbin, Simon Patrick, 2021. "Optimizing regional allocation of CO2 emissions considering output under overall efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    17. Xiuquan Huang & Tao Zhang & Xi Wang & Jiansong Zheng & Guoli Xu & Xiaoshan Wu, 2024. "Regional differences of agricultural total factor carbon efficiency in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    18. Andreas Dellnitz & Andreas Kleine & Wilhelm Rödder, 2018. "CCR or BCC: what if we are in the wrong model?," Journal of Business Economics, Springer, vol. 88(7), pages 831-850, September.
    19. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    2. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    3. Gholam R. Amin & Ali Emrouznejad & Said Gattoufi, 2017. "Modelling generalized firms’ restructuring using inverse DEA," Journal of Productivity Analysis, Springer, vol. 48(1), pages 51-61, August.
    4. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    5. Andreas Dellnitz & Andreas Kleine & Wilhelm Rödder, 2018. "CCR or BCC: what if we are in the wrong model?," Journal of Business Economics, Springer, vol. 88(7), pages 831-850, September.
    6. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    7. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 41-59.
    8. Gholam R. Amin & Mustapha Ibn Boamah, 2020. "A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks," Annals of Operations Research, Springer, vol. 295(1), pages 21-36, December.
    9. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    10. Mohammad Khoveyni & Robabeh Eslami, 2022. "Merging two-stage series network structures: A DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 273-302, March.
    11. Samira Foladi & Maghsud Solimanpur & Mustafa Jahangoshai Rezaee, 2020. "Inverse Dynamic Data Envelopment Analysis for Evaluating Faculties of University with Quasi-Fixed Inputs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 148(1), pages 323-347, February.
    12. Jahanshahloo, G.R. & Soleimani-damaneh, M. & Ghobadi, S., 2015. "Inverse DEA under inter-temporal dependence using multiple-objective programming," European Journal of Operational Research, Elsevier, vol. 240(2), pages 447-456.
    13. Soleimani-damaneh, Majid & Mostafaee, Amin, 2015. "Identification of the anchor points in FDH models," European Journal of Operational Research, Elsevier, vol. 246(3), pages 936-943.
    14. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    15. Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
    16. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    17. Martin Eling, 2006. "Performance measurement of hedge funds using data envelopment analysis," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 442-471, December.
    18. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    19. Philippe K. Widmer & Peter Zweifel, 2008. "Public Good Provision in a Federalist Country: Tiebout Competition, Fiscal Equalization, and Incentives for Efficiency in Switzerland," SOI - Working Papers 0804, Socioeconomic Institute - University of Zurich, revised Dec 2010.
    20. Yang, Guo-liang & Fukuyama, Hirofumi & Chen, Kun, 2019. "Investigating the regional sustainable performance of the Chinese real estate industry: A slack-based DEA approach," Omega, Elsevier, vol. 84(C), pages 141-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:254:y:2016:i:2:p:510-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.