IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i4p1152-1169.html
   My bibliography  Save this article

Due date assignment and scheduling on a single machine with two competing agents

Author

Listed:
  • Du-Juan Wang
  • Yunqiang Yin
  • Shuenn-Ren Cheng
  • T.C.E. Cheng
  • Chin-Chia Wu

Abstract

We study a single-machine due date assignment and scheduling problem involving two agents each seeking to optimise its own performance. We consider three due date assignment methods, namely the common, slack and unrestricted due date assignment methods. For each due date assignment method, we consider two types of optimisation problem, namely a linear combination optimisation problem (minimising the total integrated cost of the two agents) and a constrained optimisation problem (minimising the objective of one agent, subject to an upper bound on the objective of the other agent). We present a polynomial-time dynamic programming algorithm to solve the linear combination optimisation problem, and show that the constrained optimisation problem is -hard in the ordinary sense and admits a fully polynomial-time approximation scheme.

Suggested Citation

  • Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:4:p:1152-1169
    DOI: 10.1080/00207543.2015.1056317
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1056317
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1056317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Yunqiang & Cheng, T.C.E. & Hsu, Chou-Jung & Wu, Chin-Chia, 2013. "Single-machine batch delivery scheduling with an assignable common due window," Omega, Elsevier, vol. 41(2), pages 216-225.
    2. Mor, Baruch & Mosheiov, Gur, 2010. "Scheduling problems with two competing agents to minimize minmax and minsum earliness measures," European Journal of Operational Research, Elsevier, vol. 206(3), pages 540-546, November.
    3. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    4. C. T. Ng & T. C. E. Cheng & J. J. Yuan, 2006. "A note on the complexity of the problem of two-agent scheduling on a single machine," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 387-394, December.
    5. S. S. Panwalkar & M. L. Smith & A. Seidmann, 1982. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem," Operations Research, INFORMS, vol. 30(2), pages 391-399, April.
    6. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    7. Cheng, T. C. E. & Oguz, C. & Qi, X. D., 1996. "Due-date assignment and single machine scheduling with compressible processing times," International Journal of Production Economics, Elsevier, vol. 43(1), pages 29-35, May.
    8. Dvir Shabtay & George Steiner, 2007. "Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 332-350, March.
    9. Nong, Q.Q. & Cheng, T.C.E. & Ng, C.T., 2011. "Two-agent scheduling to minimize the total cost," European Journal of Operational Research, Elsevier, vol. 215(1), pages 39-44, November.
    10. Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
    11. Wan, Guohua & Vakati, Sudheer R. & Leung, Joseph Y.-T. & Pinedo, Michael, 2010. "Scheduling two agents with controllable processing times," European Journal of Operational Research, Elsevier, vol. 205(3), pages 528-539, September.
    12. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    13. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    14. Gerhard J. Woeginger, 2000. "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 57-74, February.
    15. Li, Shisheng & Ng, C.T. & Yuan, Jinjiang, 2011. "Scheduling deteriorating jobs with CON/SLK due date assignment on a single machine," International Journal of Production Economics, Elsevier, vol. 131(2), pages 747-751, June.
    16. Cheng, T. C. E. & Oguz, C. & Qi, X. D., 1996. "Due-date assignment and single machine scheduling with compressible processing times," International Journal of Production Economics, Elsevier, vol. 43(2-3), pages 107-113, June.
    17. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
    18. Gordon, Valery S. & Strusevich, Vitaly A., 2009. "Single machine scheduling and due date assignment with positionally dependent processing times," European Journal of Operational Research, Elsevier, vol. 198(1), pages 57-62, October.
    19. Y Yin & T C E Cheng & C-C Wu & S-R Cheng, 2014. "Single-machine due window assignment and scheduling with a common flow allowance and controllable job processing time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    2. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    3. Lei Pan & Xinyu Sun & Ji-Bo Wang & Li-Han Zhang & Dan-Yang Lv, 2023. "Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-16, May.
    4. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    5. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    6. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    7. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    8. Baruch Mor & Gur Mosheiov, 2021. "Minmax due-date assignment on a two-machine flowshop," Annals of Operations Research, Springer, vol. 305(1), pages 191-209, October.
    9. Maliheh Ganji & Rahmat Rabet & Seyed Mojtaba Sajadi, 2022. "A new coordinating model for green supply chain and batch delivery scheduling with satisfaction customers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4566-4601, April.
    10. Dujuan Wang & Yugang Yu & Huaxin Qiu & Yunqiang Yin & T. C. E. Cheng, 2020. "Two‐agent scheduling with linear resource‐dependent processing times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 573-591, October.
    11. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    12. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    13. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    14. Li-Han Zhang & Dan-Yang Lv & Ji-Bo Wang, 2023. "Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs," Mathematics, MDPI, vol. 11(12), pages 1-12, June.
    15. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.
    16. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    17. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    18. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    19. Yunqiang Yin & Youhua Chen & Kaida Qin & Dujuan Wang, 2019. "Two-agent scheduling on unrelated parallel machines with total completion time and weighted number of tardy jobs criteria," Journal of Scheduling, Springer, vol. 22(3), pages 315-333, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    2. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    3. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    4. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    5. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    6. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    7. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    8. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    9. Wang, Du-Juan & Yin, Yunqiang & Xu, Jianyou & Wu, Wen-Hsiang & Cheng, Shuenn-Ren & Wu, Chin-Chia, 2015. "Some due date determination scheduling problems with two agents on a single machine," International Journal of Production Economics, Elsevier, vol. 168(C), pages 81-90.
    10. Yaodong Ni & Zhaojun Zhao, 2017. "Two-agent scheduling problem under fuzzy environment," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 739-748, March.
    11. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    12. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    13. Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
    14. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    15. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    16. Cheng He & Joseph Y.-T. Leung, 2017. "Two-agent scheduling of time-dependent jobs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 362-377, August.
    17. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    18. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    19. Enrique Gerstl & Gur Mosheiov, 2014. "Single machine just‐in‐time scheduling problems with two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 1-16, February.
    20. Yunqiang Yin & Youhua Chen & Kaida Qin & Dujuan Wang, 2019. "Two-agent scheduling on unrelated parallel machines with total completion time and weighted number of tardy jobs criteria," Journal of Scheduling, Springer, vol. 22(3), pages 315-333, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:4:p:1152-1169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.